Patents by Inventor Gregory L. KLOTZ

Gregory L. KLOTZ has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10712503
    Abstract: An expanded beam ferrule includes a first ferrule halve having first reflective surfaces and a second ferrule halve having second reflective surfaces, which together retain optical fibers. The pair of reflective surfaces output collimated light parallel to the mid-plane of the ferrule. An external sleeve aligns the external surface of two similar ferrules, with corresponding second reflective surfaces of the ferrules facing each other. Output light from an optical fiber held in one ferrule is bent twice by the pair of reflective surfaces, with beam divergence after the first bent, and collimation after the second bent. The collimated light is transmitted to the facing second reflective surface in a facing second ferrule aligned by the sleeve, which is subject to optical reshaping in reverse to that undertaken in the first ferrule, so as to converge and focus light to input to the optical fiber held in the other ferrule.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: July 14, 2020
    Assignee: CUDOQUANTA FLORIDA, INC.
    Inventors: Shuhe Li, Robert Ryan Vallance, Rand D. Dannenberg, Matthew Gean, Gregory L. Klotz
  • Patent number: 10598873
    Abstract: Optical alignment of optical subassembly and optoelectronic device is achieved using an external source and an external receiver, passing optical signal through a passive waveguide in the optoelectronic device, via alignment reflective surface features provided on the optical subassembly. The optical subassembly is provided with a first alignment reflective surface directing alignment signal from the source to a grating coupler at the input of the waveguide, and a second alignment reflective surface directing to the receiver the alignment signal directed from a grating coupler at the output of the waveguide after the alignment signal has been transmitted from the input to the output through the waveguide.
    Type: Grant
    Filed: July 16, 2018
    Date of Patent: March 24, 2020
    Assignee: CUDOQUANTA FLORIDA, INC.
    Inventors: Robert Ryan Vallance, Gregory L. Klotz, Rand D. Dannenberg
  • Publication number: 20190219771
    Abstract: An expanded beam ferrule includes a first ferrule halve having first reflective surfaces and a second ferrule halve having second reflective surfaces, which together retain optical fibers. The pair of reflective surfaces output collimated light parallel to the mid-plane of the ferrule. An external sleeve aligns the external surface of two similar ferrules, with corresponding second reflective surfaces of the ferrules facing each other. Output light from an optical fiber held in one ferrule is bent twice by the pair of reflective surfaces, with beam divergence after the first bent, and collimation after the second bent. The collimated light is transmitted to the facing second reflective surface in a facing second ferrule aligned by the sleeve, which is subject to optical reshaping in reverse to that undertaken in the first ferrule, so as to converge and focus light to input to the optical fiber held in the other ferrule.
    Type: Application
    Filed: March 25, 2019
    Publication date: July 18, 2019
    Inventors: Shuhe LI, Robert Ryan VALLANCE, Rand D. DANNENBERG, Matthew GEAN, Gregory L. KLOTZ
  • Publication number: 20190137705
    Abstract: Optical alignment of optical subassembly and optoelectronic device is achieved using an external source and an external receiver, passing optical signal through a passive waveguide in the optoelectronic device, via alignment reflective surface features provided on the optical subassembly. The optical subassembly is provided with a first alignment reflective surface directing alignment signal from the source to a grating coupler at the input of the waveguide, and a second alignment reflective surface directing to the receiver the alignment signal directed from a grating coupler at the output of the waveguide after the alignment signal has been transmitted from the input to the output through the waveguide.
    Type: Application
    Filed: July 16, 2018
    Publication date: May 9, 2019
    Inventors: Robert Ryan VALLANCE, Gregory L. KLOTZ, Rand D. DANNENBERG
  • Patent number: 10274683
    Abstract: The present invention provides a spring bias that is particularly suited for use to preload a low profile ferrule of an optical connector. In accordance with the present invention, an axial preload is applied to a connector ferrule by a spring structure provided external of the connector. In one embodiment, spring structure is provided outside a plurality of optical fiber connectors, which provides axial preload of multiple ferrules. Each ferrule could be of the type that supports a plurality of optical fibers of a fiber cable. In one embodiment, the spring bias is effected by a planar flexure external of the connector. The ferrule is coupled to the planar flexure with its longitudinal axis through the center of the planar flexure.
    Type: Grant
    Filed: December 20, 2017
    Date of Patent: April 30, 2019
    Assignee: NANOPRECISION PRODUCTS, INC.
    Inventors: Shuhe Li, Gregory L. Klotz, Michael K. Barnoski, Robert Ryan Vallance
  • Patent number: 10241275
    Abstract: An expanded beam ferrule includes a first ferrule halve having first reflective surfaces and a second ferrule halve having second reflective surfaces, which together retain optical fibers. The pair of reflective surfaces output collimated light parallel to the mid-plane of the ferrule. An external sleeve aligns the external surface of two similar ferrules, with corresponding second reflective surfaces of the ferrules facing each other. Output light from an optical fiber held in one ferrule is bent twice by the pair of reflective surfaces, with beam divergence after the first bent, and collimation after the second bent. The collimated light is transmitted to the facing second reflective surface in a facing second ferrule aligned by the sleeve, which is subject to optical reshaping in reverse to that undertaken in the first ferrule, so as to converge and focus light to input to the optical fiber held in the other ferrule.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: March 26, 2019
    Assignee: NANOPRECISION PRODUCTS, INC.
    Inventors: Shuhe Li, Robert Ryan Vallance, Rand D. Dannenberg, Matthew Gean, Gregory L. Klotz
  • Patent number: 10025043
    Abstract: Optical alignment of optical subassembly and optoelectronic device is achieved using an external source and an external receiver, passing optical signal through a passive waveguide in the optoelectronic device, via alignment reflective surface features provided on the optical subassembly. The optical subassembly is provided with a first alignment reflective surface directing alignment signal from the source to a grating coupler at the input of the waveguide, and a second alignment reflective surface directing to the receiver the alignment signal directed from a grating coupler at the output of the waveguide after the alignment signal has been transmitted from the input to the output through the waveguide.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: July 17, 2018
    Assignee: NANOPRECISION PRODUCTS, INC.
    Inventors: Robert Ryan Vallance, Gregory L. Klotz, Rand D. Dannenberg
  • Publication number: 20180136411
    Abstract: The present invention provides a spring bias that is particularly suited for use to preload a low profile ferrule of an optical connector. In accordance with the present invention, an axial preload is applied to a connector ferrule by a spring structure provided external of the connector. In one embodiment, spring structure is provided outside a plurality of optical fiber connectors, which provides axial preload of multiple ferrules. Each ferrule could be of the type that supports a plurality of optical fibers of a fiber cable. In one embodiment, the spring bias is effected by a planar flexure external of the connector. The ferrule is coupled to the planar flexure with its longitudinal axis through the center of the planar flexure.
    Type: Application
    Filed: December 20, 2017
    Publication date: May 17, 2018
    Inventors: Shuhe LI, Gregory L. KLOTZ, Michael K. BARNOSKI, Robert Ryan VALLANCE
  • Publication number: 20180128990
    Abstract: A ferrule assembly for an optical fiber connector has a first ferrule component having a structured surface defining features for aligning a section of an optical fiber, and a second ferrule component that is coupled to the first ferrule component by a web, wherein the web is flexible to allow folding the web to fold the second ferrule component over the groove in the first ferrule component. The optical alignment features includes one or more open grooves for receiving a bare section of an optical fiber. The section of the optical fiber is retained in the groove between the two ferrule components.
    Type: Application
    Filed: June 22, 2017
    Publication date: May 10, 2018
    Inventors: Shuhe LI, Robert Ryan VALLANCE, Gregory L. KLOTZ
  • Publication number: 20180081123
    Abstract: An expanded beam ferrule includes a first ferrule halve having first reflective surfaces and a second ferrule halve having second reflective surfaces, which together retain optical fibers. The pair of reflective surfaces output collimated light parallel to the mid-plane of the ferrule. An external sleeve aligns the external surface of two similar ferrules, with corresponding second reflective surfaces of the ferrules facing each other. Output light from an optical fiber held in one ferrule is bent twice by the pair of reflective surfaces, with beam divergence after the first bent, and collimation after the second bent. The collimated light is transmitted to the facing second reflective surface in a facing second ferrule aligned by the sleeve, which is subject to optical reshaping in reverse to that undertaken in the first ferrule, so as to converge and focus light to input to the optical fiber held in the other ferrule.
    Type: Application
    Filed: August 17, 2017
    Publication date: March 22, 2018
    Inventors: Shuhe LI, Robert Ryan VALLANCE, Rand D. DANNENBERG, Matthew GEAN, Gregory L. KLOTZ
  • Patent number: 9897769
    Abstract: A vision-based passive alignment approach to optically couple input/output of optical fibers in optical alignment to optoelectronic components that are supported on a substrate. An optical bench supporting an optical fiber is physically and optically coupled to an optoelectronic device mounted on a submount via an optically transparent alignment block. The transparent alignment block having a first set of optical fiducials for aligning optical fiducials defined on the optical bench with the alignment block, and a second set of optical fiducials for aligning the alignment block with optical fiducials defined on the submount.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: February 20, 2018
    Assignee: NANOPRECISION PRODUCTS, INC.
    Inventors: Shuhe Li, Gregory L. Klotz, Michael K. Barnoski, Robert Ryan Vallance
  • Patent number: 9851511
    Abstract: The present invention provides a spring bias that is particularly suited for use to preload a low profile ferrule of an optical connector. In accordance with the present invention, an axial preload is applied to a connector ferrule by a spring structure provided external of the connector. In one embodiment, spring structure is provided outside a plurality of optical fiber connectors, which provides axial preload of multiple ferrules. Each ferrule could be of the type that supports a plurality of optical fibers of a fiber cable. In one embodiment, the spring bias is effected by a planar flexure external of the connector. The ferrule is coupled to the planar flexure with its longitudinal axis through the center of the planar flexure.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: December 26, 2017
    Assignee: NANOPRECISION PRODUCTS, INC.
    Inventors: Shuhe Li, Gregory L. Klotz, Michael K. Barnoski, Robert Ryan Vallance
  • Publication number: 20170299824
    Abstract: Optical alignment of optical subassembly and optoelectronic device is achieved using an external source and an external receiver, passing optical signal through a passive waveguide in the optoelectronic device, via alignment reflective surface features provided on the optical subassembly. The optical subassembly is provided with a first alignment reflective surface directing alignment signal from the source to a grating coupler at the input of the waveguide, and a second alignment reflective surface directing to the receiver the alignment signal directed from a grating coupler at the output of the waveguide after the alignment signal has been transmitted from the input to the output through the waveguide.
    Type: Application
    Filed: March 15, 2017
    Publication date: October 19, 2017
    Inventors: Robert Ryan VALLANCE, Gregory L. KLOTZ, Rand D. DANNENBERG
  • Patent number: 9690054
    Abstract: A ferrule assembly for an optical fiber connector has a first ferrule component having a structured surface defining features for aligning a section of an optical fiber, and a second ferrule component that is coupled to the first ferrule component by a web, wherein the web is flexible to allow folding the web to fold the second ferrule component over the groove in the first ferrule component. The optical alignment features includes one or more open grooves for receiving a bare section of an optical fiber. The section of the optical fiber is retained in the groove between the two ferrule components.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: June 27, 2017
    Assignee: NANOPRECISION PRODUCTS, INC.
    Inventors: Shuhe Li, Robert Ryan Vallance, Gregory L. Klotz
  • Publication number: 20170168246
    Abstract: A ferrule for a high density optical fiber connector, supporting a first set of optical fibers of a first fiber cable and a second set of optical fibers of a second fiber cable. The ferrule supports the first and second sets of optical fibers in at least one plane. In one embodiment, the first set of optical fibers are supported in a first row of open grooves, and the second set of optical fibers are supported in a second row of open grooves. The optical fibers in the first row are staggered with respect to the optical fibers of the second row. The ferrule comprises two halves, each having an open structure that has a row of open grooves precisely formed thereon in a plane. In another embodiment, the ferrule supports the first and second sets of optical fibers in a single row, in an alternating interleaving manner.
    Type: Application
    Filed: November 28, 2016
    Publication date: June 15, 2017
    Inventors: Shuhe LI, Robert Ryan VALLANCE, Michael K. BARNOSKI, Gregory L. KLOTZ
  • Patent number: 9507099
    Abstract: A ferrule for a high density optical fiber connector, supporting a first set of optical fibers of a first fiber cable and a second set of optical fibers of a second fiber cable. The ferrule supports the first and second sets of optical fibers in at least one plane. In one embodiment, the first set of optical fibers are supported in a first row of open grooves, and the second set of optical fibers are supported in a second row of open grooves. The optical fibers in the first row are staggered with respect to the optical fibers of the second row. The ferrule comprises two halves, each having an open structure that has a row of open grooves precisely formed thereon in a plane. In another embodiment, the ferrule supports the first and second sets of optical fibers in a single row, in an alternating interleaving manner.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: November 29, 2016
    Assignee: NANOPRECISION PRODUCTS, INC.
    Inventors: Shuhe Li, Robert Ryan Vallance, Michael K. Barnoski, Gregory L. Klotz
  • Publication number: 20160274310
    Abstract: The present invention provides a spring bias that is particularly suited for use to preload a low profile ferrule of an optical connector. In accordance with the present invention, an axial preload is applied to a connector ferrule by a spring structure provided external of the connector. In one embodiment, spring structure is provided outside a plurality of optical fiber connectors, which provides axial preload of multiple ferrules. Each ferrule could be of the type that supports a plurality of optical fibers of a fiber cable. In one embodiment, the spring bias is effected by a planar flexure external of the connector. The ferrule is coupled to the planar flexure with its longitudinal axis through the center of the planar flexure.
    Type: Application
    Filed: March 22, 2016
    Publication date: September 22, 2016
    Inventors: Shuhe LI, Gregory L. KLOTZ, Michael K. BARNOSKI, Robert Ryan VALLANCE
  • Publication number: 20160178853
    Abstract: A compliant structure clamps the alignment pins to accurately and precisely locate the alignment pins. The compliant structure supports the alignment pins with no clearance. The compliant structure is defined by at least a flexure in the form of a cantilevered structure extending at a side of the ferrule. The cantilevered structure, with or without a complementary support structure, defines a space in which an alignment pin can be supported. The flexure may be defined by one or more slots provided on the body of the ferrule to facilitate bending of the extended cantilevered structure. In another embodiment, the ferrule comprises a ferrule insert having grooves for supporting optical fibers, and a ferrule frame that supports the ferrule insert and alignment pins. The compliant structure is provided on the frame. In a further embodiment, the ferrule insert is provided with optical fiber grooves at its perimeter.
    Type: Application
    Filed: March 1, 2016
    Publication date: June 23, 2016
    Inventors: Shuhe LI, Robert Ryan VALLANCE, Michael K. BARNOSKI, Gregory L. KLOTZ
  • Patent number: 9279942
    Abstract: A compliant structure clamps the alignment pins to accurately and precisely locate the alignment pins. The compliant structure supports the alignment pins with no clearance. The compliant structure is defined by at least a flexure in the form of a cantilevered structure extending at a side of the ferrule. The cantilevered structure, with or without a complementary support structure, defines a space in which an alignment pin can be supported. The flexure may be defined by one or more slots provided on the body of the ferrule to facilitate bending of the extended cantilevered structure. In another embodiment, the ferrule comprises a ferrule insert having grooves for supporting optical fibers, and a ferrule frame that supports the ferrule insert and alignment pins. The compliant structure is provided on the frame. In a further embodiment, the ferrule insert is provided with optical fiber grooves at its perimeter.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: March 8, 2016
    Assignee: NANOPRECISION PRODUCTS, INC.
    Inventors: Shuhe Li, Robert Ryan Vallance, Michael K. Barnoski, Gregory L. Klotz
  • Publication number: 20150338585
    Abstract: A vision-based passive alignment approach to optically couple input/output of optical fibers in optical alignment to optoelectronic components that are supported on a substrate. An optical bench supporting an optical fiber is physically and optically coupled to an optoelectronic device mounted on a submount via an optically transparent alignment block. The transparent alignment block having a first set of optical fiducials for aligning optical fiducials defined on the optical bench with the alignment block, and a second set of optical fiducials for aligning the alignment block with optical fiducials defined on the submount.
    Type: Application
    Filed: May 26, 2015
    Publication date: November 26, 2015
    Inventors: Shuhe LI, Gregory L. KLOTZ, Michael K. BARNOSKI, Robert Ryan VALLANCE