Patents by Inventor Gregory L. Verdine

Gregory L. Verdine has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240124525
    Abstract: The present invention provides a new type of alpha-helix nucleating cross-link (“staple”) formed by olefin metathesis of a proline derivative with an alkenyl side chain and another amino acid derivative with an alkenyl side chain. The proline derivatives as described herein have been found to be strong nucleators of alpha-helix formation. The invention also provides moieties for shielding the free amide N—H's at the N-terminus of an alpha-helix, thereby further stabilizing the helix. The proline derivatives, precursors prior to cross-linking, and the cross-linked peptides are provided as well as methods of using and preparing these compounds and peptides.
    Type: Application
    Filed: August 21, 2023
    Publication date: April 18, 2024
    Inventors: Gregory L. VERDINE, Kazuhiro HAYASHI
  • Publication number: 20240117347
    Abstract: Among other things, the present disclosure relates to designed oligonucleotides, compositions, and methods thereof. In some embodiments, provided oligonucleotide compositions provide altered splicing of a transcript. In some embodiments, provided oligonucleotide compositions have low toxicity. In some embodiments, provided oligonucleotide compositions provide improved protein binding profiles. In some embodiments, provided oligonucleotide compositions have improved delivery. In some embodiments, provided oligonucleotide compositions have improved uptake. In some embodiments, the present disclosure provides methods for treatment of diseases using provided oligonucleotide compositions.
    Type: Application
    Filed: December 6, 2022
    Publication date: April 11, 2024
    Inventors: David Charles Donnell Butler, Sethumadhavan Divakaramenon, Christopher J. Francis, Maria David Frank-Kamenetsky, Naoki Iwamoto, Genliang Lu, Subramanian Marappan, Meena, Chandra Vargeese, Gregory L. Verdine, Hailin Yang, Jason Jingxin Zhang
  • Publication number: 20240044876
    Abstract: Disclosed herein are methods for identifying novel drug candidates.
    Type: Application
    Filed: March 30, 2023
    Publication date: February 8, 2024
    Inventors: Gregory L. VERDINE, David W. WHITE, David M. ARMISTEAD, Deborah J. PALESTRANT, Brian Y. CHOW, Chris K. VARMA, Mathew Edward SOWA
  • Patent number: 11834482
    Abstract: Among other things, the present disclosure provides technologies for modulating functions of beta-catenin. In some embodiments, the present disclosure provides stapled peptides that interact with beta-catenin. In some embodiments, provided stapled peptides interact with beta-catenin at an Axin-binding site of beta-catenin. In some embodiments, the present disclosure provides compounds, compositions and methods for preventing and/or treating conditions, disorders and diseases that are associated with beta-catenin.
    Type: Grant
    Filed: November 3, 2021
    Date of Patent: December 5, 2023
    Assignee: FOG PHARMACEUTICALS, INC.
    Inventors: Gerard Hilinski, So Youn Shim, Matthew Reiser Patton, John Hanney McGee, Paula Cristina Ortet, Gregory L Verdine
  • Publication number: 20230357320
    Abstract: In some embodiments, the present disclosure provides stapled peptides and compositions thereof. In some embodiments, provided peptides can bind to and modulate functions of estrogen receptor.
    Type: Application
    Filed: March 17, 2021
    Publication date: November 9, 2023
    Inventors: Gregory L. Verdine, John Hanney McGee, Santosh Kumar Choudary, Yue-Mei Zhang, Martin Robert Tremblay
  • Patent number: 11749375
    Abstract: Among other things, the present disclosure provides technologies for efficient and effective identification of ETaGs, for example, from fungi genomes. In some embodiments, provided technologies are particularly useful for identifying mammalian targets of biosynthetic products of fungi. In some embodiments, provided technologies are particularly useful for identifying and/or prioritizing human targets for drug development. In some embodiments, provided technologies are particularly useful for developing modulators for human targets based on biosynthetic products of fungi.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: September 5, 2023
    Assignee: LIFEMINE THERAPEUTICS, INC.
    Inventors: John Baxter Biggins, Brian Roger Bowman, Gregory L. Verdine
  • Patent number: 11643657
    Abstract: The present invention relates to chirally controlled oligonucleotides, chirally controlled oligonucleotide compositions, and the method of making and using the same. The invention specifically encompasses the identification of the source of certain problems with prior methodologies for preparing chiral oligonucleotides, including problems that prohibit preparation of fully chirally controlled compositions, particularly compositions comprising a plurality of oligonucleotide types. In some embodiments, the present invention provides chirally controlled oligonucleotide compositions. In some embodiments, the present invention provides methods of making chirally controlled oligonucleotides and chirally controlled oligonucleotide compositions.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: May 9, 2023
    Assignee: WAVE LIFE SCIENCES LTD.
    Inventors: David Charles Donnell Butler, Naoki Iwamoto, Meena, Nenad Svrzikapa, Gregory L. Verdine, Ivan Zlatev
  • Patent number: 11644460
    Abstract: Disclosed herein are methods for identifying novel drug candidates.
    Type: Grant
    Filed: December 21, 2020
    Date of Patent: May 9, 2023
    Assignee: Revolution Medicines, Inc.
    Inventors: Gregory L. Verdine, David W. White, David M. Armistead, Deborah J. Palestrant, Brian Y. Chow, Chris K. Varma, Mathew Edward Sowa
  • Publication number: 20230137773
    Abstract: The present invention provides peptides comprising a sequence of X-6X-5X-4X-3X-2X-1X1PX3X4PX6X7PGX10X11AX13X14X15X16LX18X19X20X21X22X23LX25X26YLX29X30X31X32 wherein the amino acids X-6, X-5, X-4, X-3, X-2, X-1, X1, X3, X4, X6, X7, X10, X11, X13, X14, X15, X16, X18, X19, X20, X21, X22, X25, X26, X29, X30, X31, and X32 are as defined herein. The present invention further provides pharmaceutical compositions comprising the peptides and methods of using the peptides for treating proliferative diseases such as cancer which are associated with Ras. Also provided are methods of screening a library of peptide dimers using a peptide dimer display technology.
    Type: Application
    Filed: May 23, 2022
    Publication date: May 4, 2023
    Inventors: Gregory L. VERDINE, John Hanney MCGEE
  • Publication number: 20220372075
    Abstract: The present invention provides stapled polypeptides of the Formulae (I) and (VI): and salts thereof; wherein the groups ; R1a, R1b, R1c, R2a, R3a, R2b, R3b, R4a, R4b, RA, RZ, L1a, L1b, L2, L3, XAA, v, w, p, m, s, n, t, and q are as defined herein. The present invention further provides methods of preparing the inventive stapled polypeptides from unstapled polypeptide precursors. The present invention further provides pharmaceutical compositions comprising a stapled polypeptide of Formula (I) or (VI), and methods of using the stapled peptides. The present invention also provides modifications of the staples post ring closing metathesis.
    Type: Application
    Filed: November 17, 2020
    Publication date: November 24, 2022
    Inventors: Gregory L. VERDINE, Gerard HILINSKI
  • Patent number: 11479797
    Abstract: The present disclosure provides proteins, nucleic acids, vectors, and host molecules useful for the production of compounds of interest, and methods for their use.
    Type: Grant
    Filed: October 27, 2017
    Date of Patent: October 25, 2022
    Assignee: Ginkgo Bioworks, Inc.
    Inventors: Daniel C. Gray, Brian R. Bowman, Gregory L. Verdine, Mathew Edward Sowa
  • Publication number: 20220306708
    Abstract: The invention relates to bifunctional stapled or stitched peptides comprising a targeting domain, a linker moiety, and an effector domain, that can be used to tether, or to bring into close proximity, at least two cellular entities (e.g., proteins). Certain aspects relate to bifunctional stapled or stitched peptides that bind to an effector biomolecule through the effector domain and bind to a target biomolecule through the targeting domain. Polypeptides and/or polypeptide complexes that are tethered by the bifunctional stapled or stitched peptides of the invention, where the effector polypeptide bound to the effector domain of the bifunctional stapled or stitched peptide modifies or alters the target polypeptide bound to the targeting domain of the bifunctional peptide. Uses of the inventive bifunctional stapled or stitched peptides including methods for treatment of disease (e.g., cancer, inflammatory diseases) are also provided.
    Type: Application
    Filed: October 6, 2021
    Publication date: September 29, 2022
    Inventors: Gregory L. VERDINE, Tom N. GROSSMANN, Raymond E. MOELLERING, Tsung-Han Johannes YEH, Rebecca Yue LIANG, Youbean OAK
  • Patent number: 11447810
    Abstract: The present disclosure provides nucleic acids encoding a Large ATP-binding regulator of the LuxR family (LAL) of transcription factors, vectors and host cells including such nucleic acids, and methods for producing compounds (e.g., polyketides or ?-lactam compounds) with such nucleic acids, vectors, and/or host cells.
    Type: Grant
    Filed: January 29, 2021
    Date of Patent: September 20, 2022
    Assignee: Ginkgo Bioworks, Inc.
    Inventors: Brian R. Bowman, Joshua A. V. Blodgett, Gregory L. Verdine, Daniel C. Gray, Jay P. Morgenstern, Lucy Foulston, Keith Robison
  • Publication number: 20220213154
    Abstract: Among other things, the present disclosure provides technologies for modulating functions of beta-catenin. In some embodiments, the present disclosure provides stapled peptides that interact with beta-catenin. In some embodiments, provided stapled peptides interact with beta-catenin at an Axin-binding site of beta-catenin. In some embodiments, the present disclosure provides compounds, compositions and methods for preventing and/or treating conditions, disorders and diseases that are associated with beta-catenin.
    Type: Application
    Filed: November 3, 2021
    Publication date: July 7, 2022
    Inventors: Gerard Hilinski, So Youn Shim, Matthew Reiser Patton, John Hanney McGee, Paula Cristina Ortet, Gregory L. Verdine
  • Patent number: 11377476
    Abstract: The present invention provides peptides comprising a sequence of X-6X-5X-4X-3X-2X-1X1PX3X4PX6X7PGX10X11AX13X14X15X16LX18X19X20X21X22X23LX25X26YLX29X30X31X32 (SEQ ID NO: 13) wherein the amino acids X?6, X?5, X?4, X?3, X?2, X?1, X1, X3, X4, X6, X7, X10, X11, X13, X14, X15, X16, X18, X19, X20, X21, X22, X25, X26, X29, X30, X31, and X32 are as defined herein. The present invention further provides pharmaceutical compositions comprising the peptides and methods of using the peptides for treating proliferative diseases such as cancer which are associated with Ras. Also provided are methods of screening a library of peptide dimers using a peptide dimer display technology.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: July 5, 2022
    Assignee: President and Fellows of Harvard College
    Inventors: Gregory L. Verdine, John Hanney McGee
  • Publication number: 20220195429
    Abstract: Among other things, the present disclosure relates to chirally controlled oligonucleotides of select designs, chirally controlled oligonucleotide compositions, and methods of making and using the same. In some embodiments, a provided chirally controlled oligonucleotide composition provides different cleavage patterns of a nucleic acid polymer than a reference oligonucleotide composition. In some embodiments, a provided chirally controlled oligonucleotide composition provides single site cleavage within a complementary sequence of a nucleic acid polymer. In some embodiments, a chirally controlled oligonucleotide composition has any sequence of bases, and/or pattern or base modifications, sugar modifications, backbone modifications and/or stereochemistry, or combination of these elements, described herein.
    Type: Application
    Filed: July 14, 2021
    Publication date: June 23, 2022
    Inventors: Chandra Vargeese, Meena, Nenad Svrzikapa, Susovan Mohapatra, Christopher J. Francis, Gregory L. Verdine, Anna Sokolovska
  • Publication number: 20220177522
    Abstract: The present invention provides a new type of alpha-helix nucleating cross-link (“staple”) formed by olefin metathesis of a proline derivative with an alkenyl side chain and another amino acid derivative with an alkenyl side chain. The proline derivatives as described herein have been found to be strong nucleators of alpha-helix formation. The invention also provides moieties for shielding the free amide N—H's at the N-terminus of an alpha-helix, thereby further stabilizing the helix. The proline derivatives, precursors prior to cross-linking, and the cross-linked peptides are provided as well as methods of using and preparing these compounds and peptides.
    Type: Application
    Filed: February 25, 2022
    Publication date: June 9, 2022
    Applicant: President and Fellows of Harvard College
    Inventors: Gregory L. VERDINE, Kazuhiro HAYASHI
  • Publication number: 20220162598
    Abstract: Among other things, the present disclosure relates to chirally controlled oligonucleotides of select designs, chirally controlled oligonucleotide compositions, and methods of making and using the same. In some embodiments, a provided chirally controlled oligonucleotide composition provides different cleavage patterns of a nucleic acid polymer than a reference oligonucleotide composition. In some embodiments, a provided chirally controlled oligonucleotide composition provides single site cleavage within a complementary sequence of a nucleic acid polymer. In some embodiments, a chirally controlled oligonucleotide composition has any sequence of bases, and/or pattern or base modifications, sugar modifications, backbone modifications and/or stereochemistry, or combination of these elements, described herein.
    Type: Application
    Filed: May 7, 2020
    Publication date: May 26, 2022
    Inventors: Chandra Vargeese, Meena, Nenad Svrzikapa, Susovan Mohapatra, Christopher J. Francis, Gregory L. Verdine, Anna Sokolovska
  • Patent number: 11332496
    Abstract: The present invention provides stapled polypeptides of the Formulae (I) and (VI): and salts thereof; wherein the groups ; R1a, R1b, R1c, R2a, R3a, R2b, R3b, R4a, R4b, RA, RZ, L1a, L1b, L2, L3, XAA, v, w, p, m, s, n, t, and q are as defined herein. The present invention further provides methods of preparing the inventive stapled polypeptides from unstapled polypeptide precursors. The present invention further provides pharmaceutical compositions comprising a stapled polypeptide of Formula (I) or (VI), and methods of using the stapled peptides. The present invention also provides modifications of the staples post ring closing metathesis.
    Type: Grant
    Filed: September 24, 2018
    Date of Patent: May 17, 2022
    Assignee: President and Fellows of Harvard College
    Inventors: Gregory L. Verdine, Gerard Hilinski
  • Publication number: 20220082556
    Abstract: Disclosed herein are methods for identifying novel drug candidates.
    Type: Application
    Filed: December 21, 2020
    Publication date: March 17, 2022
    Inventors: Gregory L. VERDINE, David W. WHITE, David M. ARMISTEAD, Deborah J. PALESTRANT, Brian Y. CHOW, Chris K. VARMA, Mathew Edward SOWA