Patents by Inventor Gregory M. Bartlett

Gregory M. Bartlett has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9169975
    Abstract: A method and system are disclosed for verifying the flow rate of gas through a mass flow controller, such as a mass flow controller used with a tool for semiconductor or solar cell fabrication. To verify the mass flow rate measured by the mass flow controller, gas passing through the mass flow controller is also passed through a mass flow meter. The measured flow rate through the mass flow controller is compared to the measured flow rate through the mass flow meter and any difference between the two measured flow rates is determined. Depending upon the magnitude of any difference, the flow of gas to the mass flow controller may be altered.
    Type: Grant
    Filed: August 28, 2012
    Date of Patent: October 27, 2015
    Assignee: ASM IP Holding B.V.
    Inventors: Michael Christopher Sarin, Rafael Mendez, Gregory M. Bartlett, Eric Hill, Keith R. Lawson, Andy Rosser
  • Patent number: 8834955
    Abstract: A gas panel according to various aspects of the present invention is configured to deliver a constant flow rate of gases to a reaction chamber during a deposition process step. In one embodiment, the gas panel comprises a deposition sub-panel having a deposition injection line, a deposition vent line, and at least one deposition process gas line. The deposition injection line supplies a mass flow rate of a carrier gas to a reactor chamber. Each deposition process gas line may include a pair of switching valves that are configured to selectively direct a deposition process gas to the reactor chamber or a vent line. The deposition vent line also includes a switching valve configured to selectively direct a second mass flow rate of the carrier gas that is equal to the sum of the mass flow rate for all of the deposition process gases to the reactor chamber or a vent line.
    Type: Grant
    Filed: April 3, 2014
    Date of Patent: September 16, 2014
    Assignee: ASM America, Inc.
    Inventors: Matthias Bauer, Gregory M. Bartlett
  • Publication number: 20140209177
    Abstract: A gas panel according to various aspects of the present invention is configured to deliver a constant flow rate of gases to a reaction chamber during a deposition process step. In one embodiment, the gas panel comprises a deposition sub-panel having a deposition injection line, a deposition vent line, and at least one deposition process gas line. The deposition injection line supplies a mass flow rate of a carrier gas to a reactor chamber. Each deposition process gas line may include a pair of switching valves that are configured to selectively direct a deposition process gas to the reactor chamber or a vent line. The deposition vent line also includes a switching valve configured to selectively direct a second mass flow rate of the carrier gas that is equal to the sum of the mass flow rate for all of the deposition process gases to the reactor chamber or a vent line.
    Type: Application
    Filed: April 3, 2014
    Publication date: July 31, 2014
    Inventors: Matthias Bauer, Gregory M. Bartlett
  • Patent number: 8728239
    Abstract: A gas panel according to various aspects of the present invention is configured to deliver a constant flow rate of gases to a reaction chamber during a deposition process step. In one embodiment, the gas panel comprises a deposition sub-panel having a deposition injection line, a deposition vent line, and at least one deposition process gas line. The deposition injection line supplies a mass flow rate of a carrier gas to a reactor chamber. Each deposition process gas line may include a pair of switching valves that are configured to selectively direct a deposition process gas to the reactor chamber or a vent line. The deposition vent line also includes a switching valve configured to selectively direct a second mass flow rate of the carrier gas that is equal to the sum of the mass flow rate for all of the deposition process gases to the reactor chamber or a vent line.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: May 20, 2014
    Assignee: ASM America, Inc.
    Inventors: Matthias Bauer, Gregory M Bartlett
  • Publication number: 20130029496
    Abstract: A gas panel according to various aspects of the present invention is configured to deliver a constant flow rate of gases to a reaction chamber during a deposition process step. In one embodiment, the gas panel comprises a deposition sub-panel having a deposition injection line, a deposition vent line, and at least one deposition process gas line. The deposition injection line supplies a mass flow rate of a carrier gas to a reactor chamber. Each deposition process gas line may include a pair of switching valves that are configured to selectively direct a deposition process gas to the reactor chamber or a vent line. The deposition vent line also includes a switching valve configured to selectively direct a second mass flow rate of the carrier gas that is equal to the sum of the mass flow rate for all of the deposition process gases to the reactor chamber or a vent line.
    Type: Application
    Filed: July 29, 2011
    Publication date: January 31, 2013
    Inventors: Matthias Bauer, Gregory M. Bartlett
  • Patent number: 8088225
    Abstract: A substrate support system comprises a substrate holder having a plurality of passages extending between top and bottom surfaces thereof. The substrate holder supports a peripheral portion of the substrate backside so that a thin gap is formed between the substrate and the substrate holder. A hollow support member provides support to an underside of, and is configured to convey gas upward into one or more of the passages of, the substrate holder. The upwardly conveyed gas flows into the gap between the substrate and the substrate holder. Depending upon the embodiment, the gas then flows either outward and upward around the substrate edge (to inhibit backside deposition of reactant gases above the substrate) or downward through passages of the substrate holder, if any, that do not lead back into the hollow support member (to inhibit autodoping by sweeping out-diffused dopant atoms away from the substrate backside).
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: January 3, 2012
    Assignee: ASM America, Inc.
    Inventors: Matt G. Goodman, Jereon Stoutyesdijk, Ravinder Aggarwal, Mike Halpin, Tony Keeton, Mark Hawkins, Lee Haen, Armand Ferro, Paul Brabant, Robert Vyne, Gregory M. Bartlett, Joseph P. Italiano, Bob Haro
  • Publication number: 20100089314
    Abstract: A substrate support system comprises a substrate holder having a plurality of passages extending between top and bottom surfaces thereof. The substrate holder supports a peripheral portion of the substrate backside so that a thin gap is formed between the substrate and the substrate holder. A hollow support member provides support to an underside of, and is configured to convey gas upward into one or more of the passages of, the substrate holder. The upwardly conveyed gas flows into the gap between the substrate and the substrate holder. Depending upon the embodiment, the gas then flows either outward and upward around the substrate edge (to inhibit backside deposition of reactant gases above the substrate) or downward through passages of the substrate holder, if any, that do not lead back into the hollow support member (to inhibit autodoping by sweeping out-diffused dopant atoms away from the substrate backside).
    Type: Application
    Filed: December 18, 2009
    Publication date: April 15, 2010
    Applicant: ASM AMERICA, INC.
    Inventors: Matt G. Goodman, Jereon Stoutyesdijk, Ravinder Aggarwal, Mike Halpin, Tony Keeton, Mark Hawkins, Lee Haen, Armand Ferro, Paul Brabant, Robert Vyne, Gregory M. Bartlett, Joseph P. Italiano, Bob Haro
  • Patent number: 7648579
    Abstract: A substrate support system comprises a substrate holder having a plurality of passages extending between top and bottom surfaces thereof. The substrate holder supports a peripheral portion of the substrate backside so that a thin gap is formed between the substrate and the substrate holder. A hollow support member provides support to an underside of, and is configured to convey gas upward into one or more of the passages of, the substrate holder. The upwardly conveyed gas flows into the gap between the substrate and the substrate holder. Depending upon the embodiment, the gas then flows either outward and upward around the substrate edge (to inhibit backside deposition of reactant gases above the substrate) or downward through passages of the substrate holder, if any, that do not lead back into the hollow support member (to inhibit autodoping by sweeping out-diffused dopant atoms away from the substrate backside).
    Type: Grant
    Filed: February 11, 2005
    Date of Patent: January 19, 2010
    Assignee: ASM America, Inc.
    Inventors: Matt G. Goodman, Jereon Stoutyesdijk, Ravinder Aggarwal, Mike Halpin, Tony Keeton, Mark Hawkins, Lee Haen, Armand Ferro, Paul Brabant, Robert Vyne, Gregory M. Bartlett, Joseph P. Italiano, Bob Haro