Patents by Inventor Gregory Michael Pietron

Gregory Michael Pietron has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9618407
    Abstract: Designs to package a magneto-elastic torque sensor in an automotive transmission for volume production applications are provided. A transfer case assembly includes a transfer case shaft having a magnetized region and a magnetic torque sensor, for detecting torque of the transfer case shaft, mounted on at least one bushing supporting the transfer case shaft. A drive axle assembly includes an axle housing, an input shaft having a magnetized region, and a magnetic torque sensor, for detecting torque of the input shaft, mounted to the axle housing.
    Type: Grant
    Filed: February 5, 2016
    Date of Patent: April 11, 2017
    Assignee: Ford Global Technologies, LLC
    Inventors: Gregory Michael Pietron, Joseph F. Kucharski, Nimrod Kapas, Diana Yanakiev, Mark Richard Dobson, Yuji Fujii
  • Patent number: 9566977
    Abstract: Systems and methods for improving operation of a hybrid vehicle are presented. In one example, operation of a driveline disconnect clutch is adjusted to compensate for clutch wear and manufacturing tolerances.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: February 14, 2017
    Assignee: Ford Global Technologies, LLC
    Inventors: Alex O'Connor Gibson, James William Loch McCallum, Seung-Hoon Lee, Gregory Michael Pietron, Yuji Fujii
  • Patent number: 9499165
    Abstract: Systems and methods for improving operation of a hybrid vehicle are presented. In one example, torque demand of a driveline after a shift is forecast to determine if it is desirable to start the engine early so that engine torque is available after the shift. The approach may improve vehicle torque response.
    Type: Grant
    Filed: April 26, 2016
    Date of Patent: November 22, 2016
    Assignee: Ford Global Technologies, LLC
    Inventors: Jeffrey Allen Doering, Dennis Craig Reed, Gregory Michael Pietron, Alex O'Connor Gibson, Adam Nathan Banker
  • Patent number: 9493152
    Abstract: Systems and methods for improving operation of a hybrid vehicle are presented. In one example, torque transferred via a driveline disconnect clutch is estimated based on characteristics of a torque converter to improve driveline operation.
    Type: Grant
    Filed: May 20, 2015
    Date of Patent: November 15, 2016
    Assignee: Ford Global Technologies, LLC
    Inventors: Jeffrey Allen Doering, Alex O'Connor Gibson, Dennis Craig Reed, Gregory Michael Pietron, Seung-Hoon Lee
  • Patent number: 9488267
    Abstract: A method of controlling a line pressure in a transmission is provided. Line pressure in a transmission is set to a pressure value including a first term that is proportional to an input torque value. The first term has a coefficient of proportionality that is increased in response to a signal indicating clutch slippage. The input torque value is a measured input torque value in a steady-state condition. The input torque value may be a maximum of the measured input torque value and a driver demand torque value in a transient condition.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: November 8, 2016
    Assignee: Ford Global Technologies, LLC
    Inventors: Diana Yanakiev, Gregory Michael Pietron, Yuji Fujii, Stefano Di Cairano, Joseph F. Kucharski, Bradley Dean Riedle
  • Publication number: 20160312884
    Abstract: A transmission for a vehicle includes a plurality of clutches that are individually selectively engaged to establish particular power flow paths. The amount of torque flowing through any clutch can be estimated while the clutch is being engaged, being disengaged, or being held locked. The estimated magnitude of clutch torque aids in proper control of the transmission, including how and when to shift between gears. A method and system for determining the uncertainty of estimated clutch torque is provided. Based on the magnitude of uncertainty of estimated clutch torque, the shift schedule can alter to specifically avoid actions that would increase the uncertainty, or the time between shifting gears can increase to reduce the effects of the uncertainty.
    Type: Application
    Filed: April 27, 2015
    Publication date: October 27, 2016
    Inventors: Jason MEYER, Gregory Michael PIETRON, Diana YANAKIEV
  • Publication number: 20160281616
    Abstract: A method of operating a vehicle includes measuring a transmission output torque, measuring impeller and turbine speeds, estimating a transmission component torque, and adjusting an engine torque to avoid overstressing a transmission component such as a gear. The method does not rely on an accurate estimate of engine torque. Furthermore, the method does not rely on a fixed transmission torque rating in each gear ratio.
    Type: Application
    Filed: March 25, 2015
    Publication date: September 29, 2016
    Inventors: Rohit Hippalgaonkar, Joseph F. Kucharski, Yuji Fujii, Gregory Michael Pietron, Jason Meyer, Eric Hongtei Tseng
  • Publication number: 20160281846
    Abstract: A method of operating a transmission includes measuring an output torque, estimating a gearbox input torque using a model, and estimating gearbox component torques based on a detailed gearbox model. The model used to estimate the input torque varies depending on whether a torque converter is locked, open, or slipping. In some operating conditions, multiple estimates are available for gearbox input torque, impeller torque, or shift element torque in which case the models are adapted. When an estimated component torque is outside an expected range, a warning flag is raised and diagnostic data is saved. When an estimated torque approaches or exceeds a torque limit, the input torque command may be reduced to prevent component damage. A warning flag may also be raised and diagnostic data saved in response to a model parameter being adapted to a value outside of a predetermined range.
    Type: Application
    Filed: March 25, 2015
    Publication date: September 29, 2016
    Inventors: Rohit Hippalgaonkar, Eric Hongtei Tseng, Yuji Fujii, Gregory Michael Pietron, James William Loch McCallum, Jason Meyer, Michael John Leads, Joseph F. Kucharski
  • Publication number: 20160281845
    Abstract: A transmission calibration tool automatically generates a detailed gearbox model based on a user input transmission topology description. During transmission calibration, the tool accepts inputs from transmission speed and torque sensors and estimates component torques for each gear element and each shift element. Following a shift or other transmission event, the calibration tool plots the component torques as a function of time, permitting the calibration engineer to better understand what is occurring during the event, and thus reducing the time required for calibration. The calibration tool also adapts several transmission component models and outputs the adapted models to provide insight into actual transmission component behavior.
    Type: Application
    Filed: March 25, 2015
    Publication date: September 29, 2016
    Inventors: Gregory Michael Pietron, Jason Meyer, Yuji Fujii, Diana Yanakiev, Joseph F. Kucharski, Nimrod Kapas
  • Patent number: 9421976
    Abstract: Systems and methods for improving operation of a hybrid vehicle are presented. In one example, driveline disconnect clutch operation is adjusted in response to vehicle mass so that the vehicle may operate similarly at lower and higher vehicle masses.
    Type: Grant
    Filed: November 11, 2014
    Date of Patent: August 23, 2016
    Assignee: Ford Global Technologies, LLC
    Inventors: Jeffrey Allen Doering, Alex O'Connor Gibson, Gregory Michael Pietron, James William Loch McCallum, Yuji Fujii
  • Publication number: 20160236677
    Abstract: Systems and methods for improving operation of a hybrid vehicle are presented. In one example, torque demand of a driveline after a shift is forecast to determine if it is desirable to start the engine early so that engine torque is available after the shift. The approach may improve vehicle torque response.
    Type: Application
    Filed: April 26, 2016
    Publication date: August 18, 2016
    Inventors: Jeffrey Allen Doering, Dennis Craig Reed, Gregory Michael Pietron, Alex O`Connor Gibson, Adam Nathan Banker
  • Publication number: 20160230882
    Abstract: A transmission and control method are disclosed which ensure proper stroke pressure and minimize torque transients during a shift event. The transmission includes a clutch having a torque capacity based on a fluid pressure, a torque sensor adapted to measure a torque value that varies in relationship to the torque capacity, and a controller. The method includes varying the fluid pressure around a predetermined value, measuring a resulting torque difference with the torque sensor, and adjusting a clutch control parameter if the resulting torque difference is less than a threshold value.
    Type: Application
    Filed: April 21, 2016
    Publication date: August 11, 2016
    Inventors: Gregory Michael Pietron, Yuji Fujii, Joseph F. Kucharski, Nicholas Joseph Witte, Stephen Michael Cicala, Bradley Dean Riedle, Diana Yanakiev, Nimrod Kapas, Davorin David Hrovat
  • Publication number: 20160195451
    Abstract: A bench test calibration method for generating wet clutch torque transfer functions includes obtaining in-vehicle clutch torques at a set of shift conditions; performing a series of bench tests at various clutch pack clearances and lubrication oil flow rates at the set of shift conditions; adjusting clutch pack clearances and lubrication oil flow rates during the series of bench tests in response to a difference between a bench test measured clutch torques and the corresponding in-vehicle clutch torques exceeding a threshold; and recording relationships between first bench test measured torques and force profiles of a clutch actuator relative to the adjusted clutch pack clearances and lubrication oil flow rates for each of the set of shift conditions as a first transfer function.
    Type: Application
    Filed: March 11, 2016
    Publication date: July 7, 2016
    Inventors: Yuji FUJII, Gregory Michael PIETRON, Diana YANAKIEV, Eric Hongtei TSENG, Vladimir IVANOVIC, Jau-Wen TSENG
  • Patent number: 9383273
    Abstract: Designs to package a magneto-elastic torque sensor in an automotive transmission, such as front wheel drive (FWD) automatic transmissions, for volume production applications are provided.
    Type: Grant
    Filed: May 24, 2011
    Date of Patent: July 5, 2016
    Assignee: Ford Global Technologies, LLC
    Inventors: Nimrod Kapas, Joseph F. Kucharski, Gregory Michael Pietron, Yuji Fujii, Steven Adam Hermann, Jeffrey Edward Maurer, Laurence Andrew Deutsch
  • Publication number: 20160185338
    Abstract: Systems and methods for improving operation of a hybrid vehicle are presented. In one example, driveline operation may be adjusted in response to operating the hybrid vehicle in a four wheel drivel low gear range. The approaches may improve vehicle drivability and reduce driveline degradation.
    Type: Application
    Filed: March 7, 2016
    Publication date: June 30, 2016
    Inventors: Jeffrey Allen Doering, Alex O`Connor Gibson, Gregory Michael Pietron, James William Loch McCallum, Yuji Fujii
  • Patent number: 9371066
    Abstract: A vehicle powertrain includes a transmission and a clutch. The slip of the clutch is adjusted to a predefined target where a sensed parameter of a shaft of the transmission corresponds to a specified noise, vibration, and harshness (NVH) level in the powertrain. The sensed parameter of the transmission shaft may be one of acceleration, speed, and torque of the transmission shaft. The transmission shaft may be one of the input shaft and output shaft of the transmission.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: June 21, 2016
    Assignee: Ford Global Technologies, LLC
    Inventors: Gregory Michael Pietron, Yuji Fujii, Diana Yanakiev, Joseph F. Kucharski, Nimrod Kapas, Alexander O'Connor Gibson, Seung-Hoon Lee
  • Publication number: 20160167659
    Abstract: A controller adjust a clutch actuator position is response to movement of a clutch pedal. During an engagement or a disengagement, the controller monitors sensor signals to determine the actuator position corresponding to the touch point. The sensors may directly indicate clutch torque or may respond indirectly. A Giant Magneto Resistive (GMR) sensor provides a precise shaft rotational position signal which can be twice numerically differentiated to yield an accurate and stable acceleration signal. The controller updates the touch point based on a change in the sensed acceleration or torque. The controller then adjusts the relationship of actuator pedal position to clutch pedal position, making mechanical wear adjustment unnecessary.
    Type: Application
    Filed: December 10, 2014
    Publication date: June 16, 2016
    Inventors: Alexander O'Connor Gibson, Yuji Fujii, Gregory Michael Pietron
  • Patent number: 9358980
    Abstract: Systems and methods for improving operation of a hybrid vehicle are presented. In one example, driveline operating modes may be adjusted in response to driving surface conditions. The approaches may improve vehicle drivability and reduce driveline degradation.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: June 7, 2016
    Assignee: Ford Global Technologies, LLC
    Inventors: Alex O'Connor Gibson, Gregory Michael Pietron, Yuji Fujii, James William Loch McCallum, Jeffrey Allen Doering
  • Patent number: 9360107
    Abstract: A transmission and control method are disclosed which ensure proper stroke pressure and minimize torque transients during a shift event. The transmission includes a clutch having a torque capacity based on a fluid pressure, a torque sensor adapted to measure a torque value that varies in relationship to the torque capacity, and a controller. The method includes varying the fluid pressure around a predetermined value, measuring a resulting torque difference with the torque sensor, and adjusting a clutch control parameter if the resulting torque difference is less than a threshold value.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: June 7, 2016
    Assignee: Ford Global Technologies, LLC
    Inventors: Gregory Michael Pietron, Yuji Fujii, Joseph F. Kucharski, Nicholas Joseph Witte, Stephen Michael Cicala, Bradley Dean Riedle, Diana Yanakiev, Nimrod Kapas, Davorin David Hrovat
  • Publication number: 20160153851
    Abstract: Designs to package a magneto-elastic torque sensor in an automotive transmission for volume production applications are provided. A transfer case assembly includes a transfer case shaft having a magnetized region and a magnetic torque sensor, for detecting torque of the transfer case shaft, mounted on at least one bushing supporting the transfer case shaft. A drive axle assembly includes an axle housing, an input shaft having a magnetized region, and a magnetic torque sensor, for detecting torque of the input shaft, mounted to the axle housing.
    Type: Application
    Filed: February 5, 2016
    Publication date: June 2, 2016
    Inventors: Gregory Michael Pietron, Joseph F. Kucharski, Nimrod Kapas, Diana Yanakiev, Mark Richard Dobson, Yuji Fujii