Patents by Inventor Gregory P. Dillon

Gregory P. Dillon has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8992163
    Abstract: An impeller includes a hub, and a plurality of blades supported by the hub, the blades being arranged in at least two blade rows. The impeller has a deployed configuration in which the blades extend away from the hub, and a stored configuration in which at least one of the blades is radially compressed, for example by folding the blade towards the hub. The impeller may also have an operational configuration in which at least some of the blades are deformed from the deployed configuration upon rotation of the impeller when in the deployed configuration. The outer edge of one or more blades may have a winglet, and the base of the blades may have an associated indentation to facilitate folding of the blades.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: March 31, 2015
    Assignees: Thoratec Corporation, The Penn State Research Foundation
    Inventors: Mark W. McBride, Thomas M. Mallison, Gregory P. Dillon, Robert L. Campbell, David A. Boger, Stephen A. Hambric, Robert F. Kunz, James P. Runt, Justin M. Walsh, Boris Leschinsky
  • Publication number: 20130066140
    Abstract: An impeller includes a hub and a blade supported by the hub. The impeller has a stored configuration in which the blade is compressed so that its distal end moves towards the hub, and a deployed configuration in which the blade extends away from the hub. The impeller may be part of a pump for pumping fluids, such as blood, and may include a cannula having a proximal portion with a fixed diameter, and a distal portion with an expandable diameter. The impeller may reside in the expandable portion of the cannula. The cannula may have a compressed diameter which allows it to be inserted percutaneously into a patient. Once at a desired location, the expandable portion of the cannula may be expanded and the impeller expanded to the deployed configuration. A flexible drive shaft may extend through the cannula for rotationally driving the impeller within the patient.
    Type: Application
    Filed: September 14, 2012
    Publication date: March 14, 2013
    Applicants: THORATEC CORPORATION, THE PENN STATE RESEARCH FOUNDATION
    Inventors: Mark W. McBride, David A. Boger, Robert L. Campbell, Gregory P. Dillon, Stephen A. Hambric, Robert F. Kunz, Boris Leschinsky, Thomas M. Mallison, James P. Runt, Justin M. Walsh
  • Patent number: 8376707
    Abstract: An impeller includes a hub, and a plurality of blades supported by the hub, the blades being arranged in at least two blade rows. The impeller has a deployed configuration in which the blades extend away from the hub, and a stored configuration in which at least one of the blades is radially compressed, for example by folding the blade towards the hub. The impeller may also have an operational configuration in which at least some of the blades are deformed from the deployed configuration upon rotation of the impeller when in the deployed configuration. The outer edge of one or more blades may have a winglet, and the base of the blades may have an associated indentation to facilitate folding of the blades.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: February 19, 2013
    Assignees: Thoratec Corporation, The Penn State Research Foundation
    Inventors: Mark W. McBride, Thomas M. Mallison, Gregory P. Dillon, Robert L. Campbell, David A. Boger, Stephen A. Hambric, Robert F. Kunz, James P. Runt, Justin M. Walsh, Boris Leschinsky
  • Publication number: 20110236210
    Abstract: An impeller includes a hub, and a plurality of blades supported by the hub, the blades being arranged in at least two blade rows. The impeller has a deployed configuration in which the blades extend away from the hub, and a stored configuration in which at least one of the blades is radially compressed, for example by folding the blade towards the hub. The impeller may also have an operational configuration in which at least some of the blades are deformed from the deployed configuration upon rotation of the impeller when in the deployed configuration. The outer edge of one or more blades may have a winglet, and the base of the blades may have an associated indentation to facilitate folding of the blades.
    Type: Application
    Filed: March 25, 2011
    Publication date: September 29, 2011
    Applicants: The Penn State Research Foundation, Thoratec Corporation
    Inventors: Mark W. McBride, Thomas M. Mallison, Gregory P. Dillon, Robert L. Campbell, David A. Boger, Stephen A. Hambric, Robert F. Kunz, James P. Runt, Justin M. Walsh, Boris Leschinsky
  • Patent number: 7927068
    Abstract: An impeller includes a hub, and a plurality of blades supported by the hub, the blades being arranged in at least two blade rows. The impeller has a deployed configuration in which the blades extend away from the hub, and a stored configuration in which at least one of the blades is radially compressed, for example by folding the blade towards the hub. The impeller may also have an operational configuration in which at least some of the blades are deformed from the deployed configuration upon rotation of the impeller when in the deployed configuration. The outer edge of one or more blades may have a winglet, and the base of the blades may have an associated indentation to facilitate folding of the blades.
    Type: Grant
    Filed: June 9, 2008
    Date of Patent: April 19, 2011
    Assignees: Thoratec Corporation, The Penn State Research Foundation
    Inventors: Mark W. McBride, Thomas M. Mallison, Gregory P. Dillon, Robert L. Campbell, David A. Boger, Stephen A. Hambric, Robert F. Kunz, James P. Runt, Justin M. Walsh, Boris Leschinsky
  • Publication number: 20110071338
    Abstract: An impeller includes a hub and at least one blade supported by the hub. The impeller has a stored configuration in which the blade is compressed so that its distal end moves towards the hub, and a deployed configuration in which the blade extends away from the hub. The impeller may be part of a pump for pumping fluids, such as pumping blood within a patient. A blood pump may include a cannula having a proximal portion with a fixed diameter, and a distal portion with an expandable diameter. The impeller may reside in the expandable portion of the cannula. The cannula may have a compressed diameter which allows it to be inserted percutaneously into a patient. Once at a desired location, the expandable portion of the cannula may be expanded and the impeller expanded to the deployed configuration. A flexible drive shaft may extend through the cannula for rotationally driving the impeller within the patient's body.
    Type: Application
    Filed: November 12, 2010
    Publication date: March 24, 2011
    Applicants: The Penn State Research Foundation, Thoratec Corporation
    Inventors: Mark W. McBride, David A. Boger, Robert L. Campbell, Gregory P. Dillon, Stephen A. Hambric, Robert F. Kunz, Boris Leschinsky, Thomas M. Mallison, James P. Runt, Justin M. Walsh
  • Patent number: 7841976
    Abstract: An impeller includes a hub and at least one blade supported by the hub. The impeller has a stored configuration in which the blade is compressed so that its distal end moves towards the hub, and a deployed configuration in which the blade extends away from the hub. The impeller may be part of a pump for pumping fluids, such as pumping blood within a patient. A blood pump may include a cannula having a proximal portion with a fixed diameter, and a distal portion with an expandable diameter. The impeller may reside in the expandable portion of the cannula. The cannula may have a compressed diameter which allows it to be inserted percutaneously into a patient. Once at a desired location, the expandable portion of the cannula may be expanded and the impeller expanded to the deployed configuration. A flexible drive shaft may extend through the cannula for rotationally driving the impeller within the patient's body.
    Type: Grant
    Filed: March 23, 2007
    Date of Patent: November 30, 2010
    Assignees: Thoratec Corporation, The Penn State Research Foundation
    Inventors: Mark W. McBride, David A. Boger, Robert L. Campbell, Gregory P. Dillon, Stephen A. Hambric, Robert F. Kunz, Boris Leschinsky, Thomas M. Mallison, James P. Runt, Justin M. Walsh
  • Publication number: 20090060743
    Abstract: An impeller includes a hub, and a plurality of blades supported by the hub, the blades being arranged in at least two blade rows. The impeller has a deployed configuration in which the blades extend away from the hub, and a stored configuration in which at least one of the blades is radially compressed, for example by folding the blade towards the hub. The impeller may also have an operational configuration in which at least some of the blades are deformed from the deployed configuration upon rotation of the impeller when in the deployed configuration. The outer edge of one or more blades may have a winglet, and the base of the blades may have an associated indentation to facilitate folding of the blades.
    Type: Application
    Filed: June 9, 2008
    Publication date: March 5, 2009
    Applicants: The Penn State Research Foundation, Datascope Investment Corp.
    Inventors: Mark W. McBride, Thomas M. Mallison, Gregory P. Dillon, Robert L. Campbell, David A. Boger, Stephen A. Hambric, Robert F. Kunz, James P. Runt, Justin M. Walsh, Boris Leschinsky
  • Patent number: 7393181
    Abstract: An impeller according to an example of the present invention comprises a hub, and at least one blade supported by the hub. The impeller has a deployed configuration in which the blade extends away from the hub, and a stored configuration in which the impeller is radially compressed, for example by folding the blade towards the hub. The impeller may comprise a plurality of blades, arranged in blade rows, to facilitate radial compression of the blades. The outer edge of a blade may have a winglet, and the base of the blade may have an associated indentation to facilitate folding of the blade.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: July 1, 2008
    Assignees: The Penn State Research Foundation, Datascope Investment Corporation
    Inventors: Mark W. McBride, Thomas M. Mallison, Gregory P. Dillon, Robert L. Campbell, David A. Boger, Stephen A. Hambric, Robert F. Kunz, James P. Runt, Justin M. Walsh, Boris Leschinsky
  • Patent number: 7238319
    Abstract: A method for fabricating a green ceramic article containing organic compounds. The method involves first heating the green ceramic article to sequentially remove the organic compounds such that the organic compound with the lowest weight loss onset temperature is substantially removed prior to the next higher weight loss onset temperature organic compound. The organic compounds include but are not limited to at least an oil or oil-based compound having a flash point or an ignition temperature, higher than the weight loss onset temperature. For this system the temperature during heating is maintained below the flash point of the oil or oil-based compound until substantial removal thereof from the green ceramic structural body. After the organic compounds are substantially removed, the green ceramic article is further fired to a temperature and for a time to obtain a final fired body.
    Type: Grant
    Filed: June 26, 2003
    Date of Patent: July 3, 2007
    Assignee: Corning Incorporated
    Inventors: John H. Brennan, Gregory P. Dillon, Tudor C. Gheorghiu, Michael J. Vayansky
  • Publication number: 20040262820
    Abstract: A method for fabricating a green ceramic article containing organic compounds. The method involves first heating the green ceramic article to sequentially remove the organic compounds such that the organic compound with the lowest weight loss onset temperature is substantially removed prior to the next higher weight loss onset temperature organic compound. The organic compounds include but are not limited to at least an oil or oil-based compound having a flash point or an ignition temperature, higher than the weight loss onset temperature. For this system the temperature during heating is maintained below the flash point of the oil or oil-based compound until substantial removal thereof from the green ceramic structural body. After the organic compounds are substantially removed, the green ceramic article is further fired to a temperature and for a time to obtain a final fired body.
    Type: Application
    Filed: June 26, 2003
    Publication date: December 30, 2004
    Inventors: John H. Brennan, Gregory P. Dillon, Tudor C. Gheorghiu, Michael J. Vayansky
  • Patent number: 6484776
    Abstract: In one form of the present invention, a system for constructing a laminate (122) is disclosed. The system comprises a ply feeder (101) that sequentially stacks one or more plies (100) to form a ply stack (102). A computer (106) directs a laser (104) to cut each ply (100) to a desired shape after becoming part of the ply stack (102). The ply stack (102) is then placed on a reconfigurable tool (112). An applied pressure compresses the ply stack (102) against the reconfigurable tool (112) while an actuator (124) subsequently reconfigures the reconfigurable tool pins (114) to a predetermined shape. In a more particular embodiment, a composites forming process is used, such as diaphragm forming, to compress the ply stack (102) before the reconfigurable tool pins (114) are reconfigured. In another particular embodiment, the reconfigurable tool pins (114) are first reconfigured then a vacuum diaphragm forming process is utilized to compress the ply stack (102) against the reconfigurable tool (112).
    Type: Grant
    Filed: April 7, 2000
    Date of Patent: November 26, 2002
    Assignee: Northrop Grumman Corporation
    Inventors: Raymond J. Meilunas, Gregory P. Dillon, Jerrell A. Nardiello
  • Patent number: 6113829
    Abstract: A method for forming and shaping powder mixtures involves compounding, homogenizing, and plasticizing components to form a mixture. The components are powder materials, binder, solvent for the binder, surfactant, and non-solvent with respect to at least the binder, the solvent, and the powder materials. The non-solvent is lower in viscosity than the binder combined with the solvent. The components are chosen to result in improved wet green strength in the subsequently formed green body. The compounding is done by the steps of dry-mixing the powder material, surfactant and binder to form a uniform blend, adding the solvent to the resulting dry blend, and thereafter adding the non-solvent to the blend. The mixture is shaped by passing it through a low to moderate shear extruder, and then through a die to form a green body. The compounding and shaping steps are carried out at a temperature of no greater than ambient temperature. The method is especially suitable for RAM extrusion.
    Type: Grant
    Filed: July 15, 1998
    Date of Patent: September 5, 2000
    Assignee: Corning Incorporated
    Inventors: Andrea W. Bookbinder, Devi Chalasani, Gregory P. Dillon, Kevin R. McCarthy, Brian E. Stutts, Michael E. Zak
  • Patent number: 5648109
    Abstract: Apparatus and methods for forming an article of advanced composites on a tool forming surface from a preform are disclosed. Apparatus includes, according a preferred embodiment, a tool forming surface, a first diaphragm for urging a preform into conforming contact with the tool forming surface, and a second diaphragm for supporting a side of the preform opposite the side engaged by the first diaphragm during forming. The second diaphragm does not extend completely between the preform and the tool forming surface. The apparatus is arranged with a first diaphragm mountable on the apparatus and conformable to a preform to be formed and a second diaphragm mounted on the apparatus and conformable to a portion of the preform simultaneously with the first diaphragm. A forming tool is provided, including a tool forming surface positionable for receiving the preform between the first diaphragm and the second diaphragm when the first and second diaphragms are mounted on the apparatus.
    Type: Grant
    Filed: May 3, 1995
    Date of Patent: July 15, 1997
    Assignee: Massachusetts Institute of Technology
    Inventors: Timothy G. Gutowski, Gregory P. Dillon, Sukyoung Chey, Haorong Li
  • Patent number: 5578158
    Abstract: A system and method for reducing the occurrence of undesirable deformations (e.g., wrinkling) in a reinforced thermoformable workpiece. The reduction in undesirable deformations is achieved by increasing the buckling resistance of the workpiece by employing a supplemental reinforcing structure. The reinforcement, in combination with a pair of shaping diaphragms, increase the effective buckling resistance applied to the workpiece during the fabrication of a composite product. The method includes forming a workpiece from a plurality of layers of a thermoformable material, and applying to at least one side of the material an external reinforcing structure to form a reinforced workpiece having a top side and a bottom side. At least one of the top or bottom sides of the reinforced workpiece is placed in contact vith a diaphragm, thus forming a shaping assembly.
    Type: Grant
    Filed: March 1, 1994
    Date of Patent: November 26, 1996
    Assignee: Massachusetts Institute of Technology
    Inventors: Timothy G. Gutowski, Gregory P. Dillon, Haorong Li, Sukyoung Chey