Patents by Inventor Gregory P. Goodzey

Gregory P. Goodzey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8936322
    Abstract: A system for use in a vehicle with a brake pedal and a brake circuit. The system includes a master cylinder assembly configured to pressurize fluid therein in response to movement of the brake pedal, a sensor assembly configured to generate a pedal position signal indicative of position of the brake pedal, an electronic control unit configured to (i) generate a brake request signal in response to generation of the pedal position signal, and (ii) generate a selector control signal, and a selector valve assembly being moved from a first mode to a second mode in response to generation of the selector control signal, the master cylinder assembly is (i) isolated from fluid communication with the brake circuit when the selector valve assembly is positioned in the first mode, and (ii) in fluid communication with the brake circuit when the selector valve assembly is positioned in the second mode.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: January 20, 2015
    Assignee: Robert Bosch GmbH
    Inventors: Milan Klimes, Timothy J. Albert, Gregory P. Goodzey, Kevin Johnson, Kenneth S. Towers
  • Patent number: 8596061
    Abstract: An in-line brake system with a hydraulic booster includes a master cylinder defining a cylinder bore, a master cylinder piston located within the cylinder bore, a transfer piston located within the cylinder bore rearwardly of the master cylinder piston, a transfer piston actuator with a first seat, a sealing member aligned with the first seat, a sealing member spring operably connected to the sealing member and the transfer piston, an input rod aligned with the first seat, a return spring operably connected to the input rod and the transfer piston actuator, a sleeve actuator located within the cylinder bore rearwardly of the master cylinder, and a sleeve spring configured to bias the sleeve actuator away from the master cylinder piston, wherein the sleeve actuator is configured to bias the transfer piston toward the master cylinder piston in response to an applied boost pressure.
    Type: Grant
    Filed: July 15, 2010
    Date of Patent: December 3, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Timothy J. Albert, Gregory P. Goodzey, Kevin K. Johnson
  • Patent number: 8573708
    Abstract: A hydraulic braking system for use in a vehicle employing both hydraulic and regenerative braking including a master cylinder with a reservoir inlet port and an outlet port. The outlet port is responsive to vehicle operator applied brake pedal pressure to close the inlet port and provide pilot pressure at the outlet port which is selectively coupled by a valve (57) to a hydraulic pedal simulator and to a control valve. The control valve provides boost hydraulic pressure from a pressure source to a vehicle wheel brake actuator in proportion to the pressure differential between the pilot pressure and a hydraulic pressure which is proportional to regenerative braking torque. This allows the power train controller to independently request different levels of regeneration on the two axles.
    Type: Grant
    Filed: June 23, 2008
    Date of Patent: November 5, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Gregory P Goodzey, Roger W Miller
  • Patent number: 8523294
    Abstract: A system for use in a vehicle with a brake pedal and a brake circuit which includes a master cylinder assembly, a sensor assembly configured to generate a pedal position signal indicative of position of the brake pedal, an electronic control unit configured to (i) generate a brake request signal in response to generation of the pedal position signal, and (ii) generate a selector control signal, and a selector valve assembly operable in a first mode and a second mode, the selector valve assembly being moved from the first mode to the second mode in response to generation of the selector control signal, the master cylinder assembly is (i) isolated from fluid communication with the brake circuit when the selector valve assembly is positioned in the first mode, and (ii) in fluid communication with the brake circuit when the selector valve assembly is positioned in the second mode.
    Type: Grant
    Filed: April 20, 2010
    Date of Patent: September 3, 2013
    Assignee: Robert Bosch GmbH
    Inventors: Milan Klimes, Timothy J. Albert, Gregory P. Goodzey, Kevin Johnson, Kenneth S. Towers
  • Publication number: 20120011844
    Abstract: An in-line brake system with a hydraulic booster includes a master cylinder defining a cylinder bore, a master cylinder piston located within the cylinder bore, a transfer piston located within the cylinder bore rearwardly of the master cylinder piston, a transfer piston actuator with a first seat, a sealing member aligned with the first seat, a sealing member spring operably connected to the sealing member and the transfer piston, an input rod aligned with the first seat, a return spring operably connected to the input rod and the transfer piston actuator, a sleeve actuator located within the cylinder bore rearwardly of the master cylinder, and a sleeve spring configured to bias the sleeve actuator away from the master cylinder piston, wherein the sleeve actuator is configured to bias the transfer piston toward the master cylinder piston in response to an applied boost pressure.
    Type: Application
    Filed: July 15, 2010
    Publication date: January 19, 2012
    Applicants: ROBERT BOSCH GMBH, ROBERT BOSCH LLC
    Inventors: Timothy J. Albert, Gregory P. Goodzey, Kevin K. Johnson
  • Publication number: 20110254360
    Abstract: A system for use in a vehicle with a brake pedal and a brake circuit. The system includes a master cylinder assembly configured to pressurize fluid therein in response to movement of the brake pedal, a sensor assembly configured to generate a pedal position signal indicative of position of the brake pedal, an electronic control unit configured to (i) generate a brake request signal in response to generation of the pedal position signal, and (ii) generate a selector control signal, and a selector valve assembly being moved from a first mode to a second mode in response to generation of the selector control signal, the master cylinder assembly is (i) isolated from fluid communication with the brake circuit when the selector valve assembly is positioned in the first mode, and (ii) in fluid communication with the brake circuit when the selector valve assembly is positioned in the second mode.
    Type: Application
    Filed: April 20, 2010
    Publication date: October 20, 2011
    Applicants: ROBERT BOSCH GMBH, ROBERT BOSCH LLC
    Inventors: Milan Klimes, Timothy J. Albert, Gregory P. Goodzey, Kevin Johnson, Kenneth S. Towers
  • Publication number: 20110254359
    Abstract: A system for use in a vehicle with a brake pedal and a brake circuit which includes a master cylinder assembly, a sensor assembly configured to generate a pedal position signal indicative of position of the brake pedal, an electronic control unit configured to (i) generate a brake request signal in response to generation of the pedal position signal, and (ii) generate a selector control signal, and a selector valve assembly operable in a first mode and a second mode, the selector valve assembly being moved from the first mode to the second mode in response to generation of the selector control signal, the master cylinder assembly is (i) isolated from fluid communication with the brake circuit when the selector valve assembly is positioned in the first mode, and (ii) in fluid communication with the brake circuit when the selector valve assembly is positioned in the second mode.
    Type: Application
    Filed: April 20, 2010
    Publication date: October 20, 2011
    Applicants: ROBERT BOSCH GMBH, ROBERT BOSCH LLC
    Inventors: Milan Klimes, Timothy J. Albert, Gregory P. Goodzey, Kevin Johnson, Kenneth S. Towers
  • Patent number: 4979398
    Abstract: A direct acting circuit through which the torque to which a shaft is being subjected is measuring without the need for divisions or other computer assisted computations. The system is self-clocking and counts speed dependent pulses generated by shaft rotation alternately in incrementing and decrementing modes with the difference being indicative of the torque. The count may be averaged over one or more complete shaft rotations to reduce or eliminate errors due to shaft or rotation sensor irregularities.
    Type: Grant
    Filed: September 28, 1989
    Date of Patent: December 25, 1990
    Assignee: Allied-Signal Inc.
    Inventors: Gregory P. Goodzey, Steven R. Masteller, William C. Hutter
  • Patent number: 4722094
    Abstract: A device for measuring the rate of change of speed of a machine such as a turbine engine which includes a digital counter for counting a speed signal having a frequency proportional to engine speed for a predetermined period of time and decrementing said count for a second period of time with the counting periods being proportional to engine speed. The up and down counts are derived by dividing a fixed frequency clock signal by a number proportional to engine speed to generate a variable frequency signal which frequency is proportional to engine speed. The difference between the up and down counts generates a remainder signal which is compared to predetermined limits.
    Type: Grant
    Filed: December 16, 1985
    Date of Patent: January 26, 1988
    Assignee: Allied Corporation
    Inventor: Gregory P. Goodzey