Patents by Inventor Gregory P. Slovin

Gregory P. Slovin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200058862
    Abstract: A significantly reduced parasitic capacitance phase-change maternal (PCM) radio frequency (RF) switch includes an RF clearance zone including a step-wise structure of intermediate interconnect segments and vias to connect PCM contacts to setback top routing interconnects. The said RF clearance zone does not include cross-over interconnect segments. A low-k dielectric is situated in the RF clearance zone. A closed-air gap is situated in the RF clearance zone within the low-k dielectric. The setback top routing interconnects are situated higher over a substrate than the PCM contacts and the intermediate interconnect segments. The PCM RF switch may further include an open-air gap situated between the setback top routing interconnects.
    Type: Application
    Filed: December 11, 2018
    Publication date: February 20, 2020
    Inventors: David J. Howard, Nabil El-Hinnawy, Gregory P. Slovin, Jefferson E. Rose
  • Publication number: 20200058868
    Abstract: A rapid testing read out integrated circuit (ROIC) includes phase-change material (PCM) radio frequency (RF) switches residing on an application specific integrated circuit (ASIC). Each PCM RF switch includes a PCM and a heating element transverse to the PCM. The ASIC is configured to provide amorphizing and crystallizing electrical pulses to a selected heating element in a selected PCM RF switch. The ASIC is also configured to generate data for determining and characterizing resistivity change of the selected heating element in the selected PCM RF switch after the ASIC performs a plurality of OFF/ON cycles. In one implementation, a testing method using the ASIC is disclosed.
    Type: Application
    Filed: August 20, 2019
    Publication date: February 20, 2020
    Inventors: David J. Howard, Gregory P. Slovin, Nabil El-Hinnawy
  • Publication number: 20200058867
    Abstract: A semiconductor device includes a substrate, an integrated passive device (IPD), and a phase-change material (PCM) radio frequency (RF) switch. The PCM RF switch includes a heating element, a PCM situated over the heating element, and PCM contacts situated over passive segments of the PCM. The heating element extends transverse to the PCM, with a heater line underlying an active segment of the PCM. The PCM RF switch is situated over a heat spreader that is situated over the substrate. The heat spreader and/or the substrate dissipate heat generated by the heating element and reduce RF noise coupling between the PCM RF switch and the IPD. An electrically insulating layer can be situated between the heat spreader and the substrate. In another approach, the PCM RF switch is situated over an RF isolation region that allows the substrate to dissipate heat and that reduces RF noise coupling.
    Type: Application
    Filed: August 16, 2019
    Publication date: February 20, 2020
    Inventors: David J. Howard, Nabil El-Hinnawy, Gregory P. Slovin, Jefferson E. Rose
  • Publication number: 20200059229
    Abstract: A rapid testing read out integrated circuit (ROIC) includes phase-change material (PCM) radio frequency (RF) switches residing on an application specific integrated circuit (ASIC). Each PCM RF switch includes a PCM and a heating element transverse to the PCM. The ASIC is configured to provide amorphizing and crystallizing electrical pulses to a selected PCM RF switch. The ASIC is also configured to determine if the selected PCM RF switch is in an OFF state or in an ON state. In one implementation, a testing method using the ASIC is disclosed.
    Type: Application
    Filed: August 16, 2019
    Publication date: February 20, 2020
    Inventors: David J. Howard, Gregory P. Slovin, Nabil El-Hinnawy
  • Publication number: 20200059217
    Abstract: In tuning a radio frequency (RF) module including a non-volatile tunable RF filter, a desired frequency and an undesired frequency being provided by an amplifier of the RF module are detected. The non-volatile tunable RF filter is coupled to an output of the amplifier of the RF module. A factory setting of an adjustable capacitor in the non-volatile tunable RF filter is changed by factory-setting a state of a non-volatile RF switch, such that the non-volatile tunable RF filter substantially rejects the undesired frequency and substantially passes the desired frequency. The adjustable capacitor includes the non-volatile RF switch, and the factory setting of the adjustable capacitor corresponds to a factory-set state of the non-volatile RF switch. An end-user is prevented access to the non-volatile RF switch, so as prevent the end-user from modifying the factory-set state of the non-volatile RF switch.
    Type: Application
    Filed: May 22, 2019
    Publication date: February 20, 2020
    Inventors: Chris Masse, David J. Howard, Nabil El-Hinnawy, Gregory P. Slovin
  • Publication number: 20200058866
    Abstract: A semiconductor device includes a substrate, an integrated passive device (IPD), and a phase-change material (PCM) radio frequency (RF) switch. The PCM RF switch includes a heating element, a PCM situated over the heating element, and PCM contacts situated over passive segments of the PCM. The heating element extends transverse to the PCM, with a heater line underlying an active segment of the PCM. The PCM RF switch is situated over a heat spreader that is situated over the substrate. The heat spreader and/or the substrate dissipate heat generated by the heating element and reduce RF noise coupling between the PCM RF switch and the IPD. An electrically insulating layer can be situated between the heat spreader and the substrate. In another approach, the PCM RF switch is situated over an RF isolation region that allows the substrate to dissipate heat and that reduces RF noise coupling.
    Type: Application
    Filed: August 7, 2019
    Publication date: February 20, 2020
    Inventors: David J. Howard, Nabil EI-Hinnawy, Gregory P. Slovin, Jefferson E. Rose
  • Publication number: 20200058852
    Abstract: An IC (“integrated circuit”) chip includes a substrate and a phase-change material (PCM) radio frequency (RF) switch, having a heating element, a PCM situated over the heating element, and PCM contacts situated over passive segments of the PCM. The heating element extends transverse to the PCM and underlies an active segment of the PCM. An active device is situated in the substrate. In one approach, the PCM RF switch is situated over the substrate, and the substrate is a heat spreader for the PCM RF switch. In another approach, the PCM RF switch is situated in or above a first metallization level, and a dedicated heat spreader is situated under the PCM RF switch. Alternatively, a PCM RF switch is situated in a flip chip, an active device is situated in the IC chip, and the flip chip is situated over the IC chip forming a composite device.
    Type: Application
    Filed: February 14, 2019
    Publication date: February 20, 2020
    Inventors: Nabil El-Hinnawy, Gregory P. Slovin, Jefferson E. Rose, David J. Howard
  • Publication number: 20200058864
    Abstract: A radio frequency (RF) switch includes a heating element and a thermally resistive material adjacent to sides of the heating element. A thermally conductive and electrically insulating material is situated on top of the heating element. A phase-change material (PCM) is situated over the thermally conductive and electrically insulating material. The PCM has an active segment overlying the thermally conductive and electrically insulating material, and passive segments underlying input/output contacts of the RF switch. The RF switch may include a bulk substrate heat spreader, a silicon-on-insulator (SOI) handle wafer heat spreader, or an SOI top semiconductor heat spreader under the heating element.
    Type: Application
    Filed: January 14, 2019
    Publication date: February 20, 2020
    Inventors: Nabil El-Hinnawy, Gregory P. Slovin, Jefferson E. Rose, David J. Howard
  • Publication number: 20200058861
    Abstract: A radio frequency (RF) switch includes a phase-change material (PCM), a heating element underlying an active segment of the PCM and extending outward and transverse to the PCM, a capacitive RF terminal, and an ohmic RF terminal. The capacitive RF terminal can include a first trench metal liner situated on a first passive segment of the PCM, and a dielectric liner separating the first trench metal liner from a first trench metal plug. The ohmic RF terminal can include a second trench metal liner situated on a second passive segment of the PCM, and a second trench metal plug ohmically connected to the second trench metal liner. Alternatively, the capacitive RF terminal and the ohmic RF terminal can include lower metal portions and upper metal portions. A MIM capacitor can be formed by the upper metal portion of the capacitive RF terminal, an insulator, and a patterned top plate.
    Type: Application
    Filed: February 8, 2019
    Publication date: February 20, 2020
    Inventors: Gregory P. Slovin, Nabil El-Hinnawy, Jefferson E. Rose, David J. Howard
  • Publication number: 20200058582
    Abstract: A capacitive tuning circuit includes radio frequency (RF) switches connected to an RF line. Each RF switch includes a phase-change material (PCM), a heating element underlying an active segment of the PCM and extending outward and transverse to the PCM, and RF terminals having lower metal portions and upper metal portions. Alternatively, the RF terminals can have a trench metal liner separated from a trench metal plug by a dielectric liner. At least one capacitor is formed in part by at least one of the lower metal portions, upper metal portions, or trench metal liner. The capacitive tuning circuit can be set to a desired capacitance value when a first group of the RF switches is in an OFF state and a second group of the RF switches is in an ON state.
    Type: Application
    Filed: January 14, 2019
    Publication date: February 20, 2020
    Inventors: Nabil El-Hinnawy, Gregory P. Slovin, Jefferson E. Rose, David J. Howard
  • Publication number: 20200058869
    Abstract: A radio frequency (RF) switch includes a heating element, a nugget, a phase-change material (PCM), and input/output contacts. The nugget comprises thermally conductive and electrically insulating material, and is situated on top of the heating element. The PCM has an active segment approximately situated over the nugget, and passive segments approximately situated under the input/output contacts. The PCM RF switch may include thermally resistive material adjacent to first and second sides of the heating element, and/or adjacent to first and second sides of the nugget.
    Type: Application
    Filed: August 20, 2019
    Publication date: February 20, 2020
    Inventors: Gregory P. Slovin, David J. Howard, Jefferson E. Rose, Michael J. DeBar, Nabil EI-Hinnawy
  • Publication number: 20200059219
    Abstract: In a first approach, a reconfigurable radio frequency (RF) filtering module includes a phase-change material (PCM) RF switch bank and an RF filter bank. Each RF filter in the RF filter bank is capable to be engaged and disengaged by a PCM RF switch in the PCM RF switch bank. In a second approach, a tunable RF filter includes PCM RF switches and a capacitor and/or an inductor. Each of the capacitor and/or inductor is capable to be engaged and disengaged by at least one PCM RF switch of the PCM RF switches. In a third approach, an adjustable passive component includes multiple segments and a PCM RF switch. A selectable segment in the multiple segments is capable to be engaged and disengaged by the PCM RF switch. In all approaches, each PCM RF switch includes a PCM and a heating element transverse to the PCM.
    Type: Application
    Filed: May 21, 2019
    Publication date: February 20, 2020
    Inventors: Nabil El-Hinnawy, Chris Masse, Gregory P. Slovin, David J. Howard
  • Publication number: 20200058628
    Abstract: In a method for wafer-to-wafer bonding, an integrated circuit (IC) wafer and a phase-change material (PCM) switch wafer are provided. The IC includes at least one active device, and has an IC substrate side and a metallization side. The PCM switch wafer has a heat spreading side and a radio frequency (RF) terminal side. A heat spreader is formed in the PCM switch wafer. In one approach, the heat spreading side of the PCM switch wafer is bonded to the metallization side of the IC wafer, then a heating element is formed between the heat spreader and a PCM in the PCM switch wafer. In another approach, a heating element is formed between the heat spreader and a PCM in the PCM switch wafer, then the RF terminal side of the PCM switch wafer is bonded to the metallization side of the IC wafer.
    Type: Application
    Filed: May 15, 2019
    Publication date: February 20, 2020
    Inventors: Gregory P. Slovin, David J. Howard
  • Publication number: 20200057013
    Abstract: A rapid testing read out integrated circuit (ROIC) includes phase-change material (PCM) radio frequency (RF) switches residing on an application specific integrated circuit (ASIC). Each PCM RF switch includes a PCM and a heating element transverse to the PCM. The ASIC is configured to provide amorphizing and crystallizing electrical pulses to a selected PCM RF switch. The ASIC is also configured to generate data for determining and characterizing OFF state conductivity skew and ON state conductivity skew of the PCM in the selected PCM RF switch after the ASIC performs a plurality of OFF/ON cycles. In one implementation, a testing method using the ASIC is disclosed.
    Type: Application
    Filed: August 19, 2019
    Publication date: February 20, 2020
    Inventors: David J. Howard, Gregory P. Slovin, Nabil El-Hinnawy
  • Publication number: 20200058853
    Abstract: A radio frequency (RF) switch includes a heating element, an aluminum nitride layer situated over the heating element, and a phase-change material (PCM) situated over the aluminum nitride layer. An inside segment of the heating element underlies an active segment of the PCM, and an intermediate segment of the heating element is situated between a terminal segment of the heating element and the inside segment of the heating element. The aluminum nitride layer situated over the inside segment of the heating element provides thermal conductivity and electrical insulation between the heating element and the active segment of the PCM. The aluminum, nitride layer extends into the intermediate segment of the heating element and provides chemical protection to the intermediate segment of the heating element, such that the intermediate segment of the heating element remains substantially unetched and with substantially same thickness as the inside segment.
    Type: Application
    Filed: August 28, 2019
    Publication date: February 20, 2020
    Inventors: Gregory P. Slovin, Nabil EI-Hinnawy, David J. Howard, Jefferson E. Rose
  • Publication number: 20200058354
    Abstract: An array includes a shared pulse generator and a plurality of cells. A selected cell the plurality of cells includes a phase-change material (PCM) and a heating element, the heating element being transverse to the PCM. The array further includes a row selector configured to connect the shared pulse generator to the selected cell, and a column selector configured to connect the selected cell to a ground. The shared pulse generator provides an electrical pulse to cause the heating element in the selected cell to generate a heat pulse. In one approach, the selected cell also includes a non-linear device such as a diode, and the shared pulse generator provides the electrical pulse to a PCM RF switch of the selected cell through the non-linear device to change a state of the PCM RF switch.
    Type: Application
    Filed: April 12, 2019
    Publication date: February 20, 2020
    Inventors: Gregory P. Slovin, Nabil El-Hinnawy, David J. Howard
  • Publication number: 20200058857
    Abstract: In fabricating a radio frequency (RF) switch, a phase-change material (PCM) and a heating element underlying an active segment of the PCM are provided. A contact uniformity support layer is formed over the PCM. The PCM and the contact uniformity support layer are patterned. A contact dielectric is formed over the contact uniformity support layer. Slot lower portions of PCM contacts are formed extending through the contact dielectric and through the contact uniformity support layer, and connected to passive segments of the PCM. Wide upper portions of the PCM contacts are formed over the contact dielectric and over the slot lower portions of the PCM contacts. The contact dielectric separates the wide upper portions of the PCM contacts from the heating element so as to reduce parasitic capacitance of the RF switch. The contact uniformity support layer maintains a substantially constant thickness of the passive segments of the PCM.
    Type: Application
    Filed: November 9, 2018
    Publication date: February 20, 2020
    Inventors: Jefferson E. Rose, Gregory P. Slovin, Nabil El-Hinnawy, Michael J. DeBar, David J. Howard
  • Publication number: 20200058848
    Abstract: A reduced parasitic capacitance radio frequency (RF) switch includes a phase-change material (PCM) and a heating element underlying an active segment of the PCM and extending outward and transverse to the PCM. A PCM contact connects a PCM routing interconnect with a passive segment of the PCM, wherein the passive segment extends outward and is transverse to the heating element. A heating element contact connects a heating element routing interconnect with a terminal segment of the heating element. The heating element contact is situated cross-wise to the PCM contact. The heating element routing interconnect is situated at a different interlayer metal level relative to the PCM routing interconnect so as to achieve the reduced parasitic capacitance. The heating element routing interconnect can be situated above the heating element. Alternatively, the heating element routing interconnect can be situated below the heating element.
    Type: Application
    Filed: October 16, 2018
    Publication date: February 20, 2020
    Inventors: Nabil El-Hinnawy, Gregory P. Slovin, Jefferson E. Rose, David J. Howard
  • Publication number: 20200058849
    Abstract: A radio frequency (RF) switch includes a heating element, an aluminum nitride layer situated over the heating element, and a phase-change material (PCM) situated over the aluminum nitride layer. An inside segment of the heating element underlies an active segment of the PCM, and an intermediate segment of the heating element is situated between a terminal segment of the heating element and the inside segment of the heating element. The aluminum nitride layer situated over the inside segment of the heating element provides thermal conductivity and electrical insulation between the heating element and he active segment of the PCM. The aluminum nitride layer extends into the intermediate segment of the heating element and provides chemical protection to the intermediate segment of the heating element, such that the intermediate segment of the heating element remains substantially unetched and with substantially same thickness as the inside segment.
    Type: Application
    Filed: October 18, 2018
    Publication date: February 20, 2020
    Inventors: Gregory P. Slovin, Nabil El-Hinnawy, David J. Howard, Jefferson E. Rose
  • Publication number: 20200058863
    Abstract: A radio frequency (RF) switch includes a heating element, a phase-change material (PCM) situated over the heating element, and PCM contacts situated over passive segments of the PCM. The heating element extends transverse to the PCM. The heating element can have a heater line underlying an active segment of the PCM. Alternatively, the heating element can have a split heater lines underlying an active segment of the PCM. The split heater lines increase an area of the active segment of the PCM and reduce a heater-to-PCM parasitic capacitance. A fan-out structure having fan-out metal can connect the heater line to a heater contact. The fan-out structure reduces heat generation outside the active segment of the PCM and reduces a heater contact-to-PCM parasitic capacitance. The fan-out structure can have dielectric segments interspersed between the fan-out metal to reduce dishing.
    Type: Application
    Filed: December 14, 2018
    Publication date: February 20, 2020
    Inventors: Nabil El-Hinnawy, Gregory P. Slovin, Michael J. DeBar, Jefferson E. Rose, David J. Howard