Patents by Inventor Grigorii Lev Soloveichik

Grigorii Lev Soloveichik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7084291
    Abstract: A method of increasing the amount of diphenylcarbonate produced per amount of catalyst consumed in a phenol carbonylation process is described. Phenolic carbonylation produces water as a reaction product which reduces the turnover number (TON) of the catalyst. A mixture of a phenolic precursor, a base containing catalyst and co-catalyst components and at least one chemical additive comprising a halide or hydroxide of alkali metal or alkaline earth metal when carbonylated together under specific conditions increases the turnover number (TON) and water resistivity of a palladium catalyst. The metal halide likely makes the catalyst less susceptible to degradation by water hence increasing the reaction yield per weight of catalyst consumed.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: August 1, 2006
    Assignee: General Electric Company
    Inventors: Grigorii Lev Soloveichik, Timothy Leigh Chuck, Kirill Vladimirovich Shalyaev, Eric James Pressman, Peter John Bonitatebus, Jr.
  • Patent number: 7045666
    Abstract: Brominated hydroxyaromatic compounds such as p-bromophenol are prepared by contacting a hydroxyaromatic compound with oxygen and a bromine source such as hydrogen bromide or an alkali metal or alkaline earth metal bromide in an acidic medium, in the presence of elemental copper or a copper compound as catalyst. The brominated product of this reaction may be converted alternately to a dihydroxyaromatic compound such as hydroquinone by hydrolyses, or a dihydroxybiphenyl compound such as 4,4?-dihydroxybiphenyl by reductive coupling.
    Type: Grant
    Filed: January 16, 2003
    Date of Patent: May 16, 2006
    Assignee: General Electric Company
    Inventors: Eric James Pressman, John Yaw Ofori, Grigorii Lev Soloveichik, Ryan Christopher Mills, Jonathan Lloyd Male
  • Patent number: 7022886
    Abstract: A method for selectively brominating hydroxyaromatic compounds is disclosed. Hydroxyaromatic compounds are contacted with oxygen and a bromine source, in an acidic medium, in the presence of a catalyst selected from the group of compounds and mixtures of compounds of Group IV–VIII transition metals of the Periodic Table of Elements. The selectivity of mono-brominated products produced, predominantly in the para-position, from the method using transition metal compounds as catalysts is significantly higher than that of known methods using other catalysts. Thus, there is a significant reduction in the production of undesirable dibrominated and more highly brominated by-products.
    Type: Grant
    Filed: August 28, 2003
    Date of Patent: April 4, 2006
    Assignee: General Electric Company
    Inventor: Grigorii Lev Soloveichik
  • Patent number: 6903049
    Abstract: The present disclosure is directed to a catalyst composition used in the production of aromatic carbonates, and in particular to a catalyst composition which comprises an activating solvent. In one embodiment the disclosure relates to a catalyst composition which comprises to a combination of two activating solvents, a first activating solvent chosen for its coordinative properties, and a second activating solvent chosen for its dielectric constant properties. In alternative embodiments, the present disclosure also pertains to a method for producing aromatic carbonates using the catalyst compositions disclosed herein.
    Type: Grant
    Filed: February 25, 2002
    Date of Patent: June 7, 2005
    Assignee: General Electric Company
    Inventor: Grigorii Lev Soloveichik
  • Patent number: 6827836
    Abstract: Direct bromination of hydroxy aromatic compounds by electrolysis of mixtures comprising the hydroxy aromatic compound, a source of bromide ion, and an organic solvent provides product brominated hydroxy aromatic compounds at synthetically useful rates with high para-selectivity. The process does not require the use or handling of molecular bromine or bromine complexes and allows the full use of the bromide source without generating hydrogen bromide as a by-product of the reaction. The simple electrochemical equipment required by the present process, for example an undivided electrochemical cell, makes the process less capital intensive than analogous electrochemical processes carried out in divided cells. The use of hydrobromic acid as the source of bromide ion provides clean reaction with nearly exclusive formation of the target brominated product.
    Type: Grant
    Filed: December 2, 2002
    Date of Patent: December 7, 2004
    Assignee: General Electric Company
    Inventor: Grigorii Lev Soloveichik
  • Publication number: 20040143144
    Abstract: Brominated hydroxyaromatic compounds such as p-bromophenol are prepared by contacting a hydroxyaromatic compound with oxygen and a bromine source such as hydrogen bromide or an alkali metal or alkaline earth metal bromide in an acidic medium, in the presence of elemental copper or a copper compound as catalyst. The brominated product of this reaction may be converted alternately to a dihydroxyaromatic compound such as hydroquinone by hydrolyses, or a dihydroxybiphenyl compound such as 4,4′-dihydroxybiphenyl by reductive coupling.
    Type: Application
    Filed: January 16, 2003
    Publication date: July 22, 2004
    Applicant: General Electric Company
    Inventors: Eric James Pressman, John Yaw Ofori, Grigorii Lev Soloveichik, Ryan Christopher Mills, Jonathan Lloyd Male
  • Publication number: 20040104126
    Abstract: Direct bromination of hydroxy aromatic compounds by electrolysis of mixtures comprising the hydroxy aromatic compound, a source of bromide ion, and an organic solvent provides product brominated hydroxy aromatic compounds at synthetically useful rates with high para-selectivity. The process does not require the use or handling of molecular bromine or bromine complexes and allows the full use of the bromide source without generating hydrogen bromide as a by-product of the reaction. The simple electrochemical equipment required by the present process, for example an undivided electrochemical cell, makes the process less capital intensive than analogous electrochemical processes carried out in divided cells. The use of hydrobromic acid as the source of bromide ion provides clean reaction with nearly exclusive formation of the target brominated product.
    Type: Application
    Filed: December 2, 2002
    Publication date: June 3, 2004
    Applicant: General Electric Company
    Inventor: Grigorii Lev Soloveichik
  • Patent number: 6706908
    Abstract: The present invention provides a method and catalyst composition for carbonylating aromatic hydroxy compounds, comprising the step of contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst composition comprising an effective amount of at least one Group 8, 9, or 10 metal source, an effective amount of a combination of inorganic co-catalysts comprising at least one Group 4 metal source and at least one Group 11 metal source, an effective amount of at least one salt co-catalyst with an anion selected from the group consisting of carboxylate, benzoate, acetate, sulfate, and nitrate, wherein the carbonylation catalyst composition is free of a halide source.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: March 16, 2004
    Assignee: General Electric Company
    Inventors: Kirill Vladimirovich Shalyaev, Grigorii Lev Soloveichik, Donald Wayne Whisenhunt, Jr., Bruce Fletcher Johnson
  • Patent number: 6700008
    Abstract: A method and catalyst composition for economically producing aromatic carbonates from aromatic hydroxy compounds is disclosed. The present invention provides a method for carbonylating aromatic hydroxy compounds, comprising the step of contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a halide-free carbonylation catalyst composition comprising an effective amount of at least one Group 8, 9, or 10 metal source, an effective amount of a first inorganic co-catalyst comprising at least one Group 14 metal source, an effective amount of a salt co-catalyst, and optionally an effective amount of a second inorganic co-catalyst selected from the group consisting of a Group 4 metal source, a Group 7 metal source, a Group 11 metal source, and a lanthanide element source, and optionally an effective amount of a base.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: March 2, 2004
    Assignee: General Electric Company
    Inventors: Kirill Vladimirovich Shalyaev, Bruce Fletcher Johnson, Donald Wayne Whisenhunt, Jr., Grigorii Lev Soloveichik
  • Patent number: 6700009
    Abstract: A method and catalyst system for economically producing aromatic carbonates from aromatic hydroxy compounds. In one embodiment, the present invention provides a method of carbonylating aromatic hydroxy compounds by contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst system that includes an effective amount of a Group VIII B metal source; an effective amount of a bromide composition; an effective amount of an activating organic solvent; an effective amount of a combination of inorganic co-catalysts comprising a lead source and a copper source; and an effective amount of a base.
    Type: Grant
    Filed: July 8, 2002
    Date of Patent: March 2, 2004
    Assignee: General Electric Company
    Inventors: Grigorii Lev Soloveichik, Kirill Vladimirovich Shalyaev, Marsha Mottel Grade, Bruce Fletcher Johnson
  • Patent number: 6617279
    Abstract: Hydroxyaromatic compounds such as phenol are carbonylated with oxygen and carbon monoxide in the presence of a catalyst system comprising a Group VIIIB metal, preferably palladium; an iodide salt, preferably sodium iodide; and at least one organic bisphosphine such as 1,3-bis(diphenylphosphino)propane or 1,4-bis(diphenylphosphino)butane. The catalyst system also preferably contains a compound of cerium or lead.
    Type: Grant
    Filed: February 12, 2001
    Date of Patent: September 9, 2003
    Assignee: General Electric Company
    Inventors: Ben Purushotam Patel, Grigorii Lev Soloveichik, John Yaw Ofori
  • Publication number: 20030162652
    Abstract: The present disclosure is directed to a catalyst composition used in the production of aromatic carbonates, and in particular to a catalyst composition which comprises an activating solvent. In one embodiment the disclosure relates to a catalyst composition which comprises to a combination of two activating solvents, a first activating solvent chosen for its coordinative properties, and a second activating solvent chosen for its dielectric constant properties. In alternative embodiments, the present disclosure also pertains to a method for producing aromatic carbonates using the catalyst compositions disclosed herein.
    Type: Application
    Filed: February 25, 2002
    Publication date: August 28, 2003
    Applicant: General Electric CRD
    Inventor: Grigorii Lev Soloveichik
  • Patent number: 6566295
    Abstract: A method and catalyst system for economically producing aromatic carbonates from aromatic hydroxy compounds is disclosed. In one embodiment, the present invention provides a method of carbonylating aromatic hydroxy compounds by contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst system that includes an effective amount of at least one Group 8, 9, or 10 metal source; an effective amount of at least one bromide composition; an effective amount of at least one activating organic solvent; an effective amount of a combination of inorganic co-catalysts comprising at least one titanium source and at least one copper source; and an effective amount of at least one base.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: May 20, 2003
    Assignee: General Electric Company
    Inventors: Kirill Vladimirovich Shalyaev, Grigorii Lev Soloveichik, Bruce Fletcher Johnson
  • Patent number: 6566299
    Abstract: A catalyst system for economically producing aromatic carbonates from aromatic hydroxy compounds. In one embodiment, the present invention provides a carbonylation catalyst system that includes a catalytic amount of an inorganic co-catalyst containing ytterbium. In various alternative embodiments, the carbonylation catalyst system can include an effective amount of a palladium source and an effective amount of a halide composition. Further alternative embodiments can include catalytic amounts of various inorganic co-catalyst combinations.
    Type: Grant
    Filed: June 23, 2000
    Date of Patent: May 20, 2003
    Assignee: General Electric Company
    Inventors: James Lawrence Spivack, Donald Wayne Whisenhunt, Jr., James Norman Cawse, Grigorii Lev Soloveichik
  • Publication number: 20030040428
    Abstract: A method and catalyst composition for economically producing aromatic carbonates from aromatic hydroxy compounds is disclosed. The present invention provides a method for carbonylating aromatic hydroxy compounds, comprising the step of contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a halide-free carbonylation catalyst composition comprising an effective amount of at least one Group 8, 9, or 10 metal source, an effective amount of a first inorganic co-catalyst comprising at least one Group 14 metal source, an effective amount of a salt co-catalyst, and optionally an effective amount of a second inorganic co-catalyst selected from the group consisting of a Group 4 metal source, a Group 7 metal source, a Group 11 metal source, and a lanthanide element source, and optionally an effective amount of a base.
    Type: Application
    Filed: April 30, 2002
    Publication date: February 27, 2003
    Inventors: Kirill Vladimirovich Shalyaev, Bruce Fletcher Johnson, Donald Wayne Whisenhunt, Grigorii Lev Soloveichik
  • Patent number: 6514900
    Abstract: A method and catalyst system for economically producing aromatic carbonates from aromatic hydroxy compounds. In one embodiment, the present invention provides a method of carbonylating aromatic hydroxy compounds by contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst system that includes a catalytic amount of an inorganic co-catalyst containing titanium. In various alternative embodiments, the carbonylation catalyst system can include an effective amount of a palladium source and an effective amount of a halide composition. Further alternative embodiments can include catalytic amounts of various inorganic co-catalyst combinations.
    Type: Grant
    Filed: February 12, 2001
    Date of Patent: February 4, 2003
    Assignee: General Electric Company
    Inventors: James Lawrence Spivack, James Norman Cawse, Donald Wayne Whisenhunt, Jr., Bruce Fletcher Johnson, Grigorii Lev Soloveichik
  • Patent number: 6512134
    Abstract: A method and catalyst system for economically producing aromatic carbonates from aromatic hydroxy compounds is disclosed. In one embodiment, the present invention provides a method of carbonylating aromatic hydroxy compounds by contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst system that includes an effective amount of at least one Group 8, 9, or 10 metal source; an effective amount of at least one bromide composition; an effective amount of at least one activating organic solvent; an effective amount of a combination of inorganic co-catalysts comprising at least one titanium source and at least one copper source; and an effective amount of at least one base.
    Type: Grant
    Filed: May 20, 2002
    Date of Patent: January 28, 2003
    Assignee: General Electric Company
    Inventors: Kirill Vladimirovich Shalyaev, Grigorii Lev Soloveichik, Bruce Fletcher Johnson
  • Patent number: 6509489
    Abstract: A method and catalyst system for producing aromatic carbonates from aromatic hydroxy compounds. In one embodiment, the method includes the step of contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst system having an effective amount of a nickel source in the absence of a Group VIII B metal source. In various alternative embodiments, the carbonylation catalyst system can include at least one inorganic co-catalyst, as well as a halide composition and/or a base.
    Type: Grant
    Filed: October 24, 2000
    Date of Patent: January 21, 2003
    Assignee: General Electric Company
    Inventors: Ben Purushotam Patel, Grigorii Lev Soloveichik, Donald Wayne Whisenhunt, Jr., Kirill Vladimirovich Shalyaev
  • Publication number: 20030004053
    Abstract: A method and catalyst system for economically producing aromatic carbonates from aromatic hydroxy compounds. In one embodiment, the present invention provides a method of carbonylating aromatic hydroxy compounds by contacting at least one aromatic hydroxy compound with oxygen and carbon monoxide in the presence of a carbonylation catalyst system that includes an effective amount of a Group VIII B metal source; an effective amount of a bromide composition; an effective amount of an activating organic solvent; an effective amount of a combination of inorganic co-catalysts comprising a lead source and a copper source; and an effective amount of a base.
    Type: Application
    Filed: July 8, 2002
    Publication date: January 2, 2003
    Inventors: Grigorii Lev Soloveichik, Kirill Vladimirovich Shalyaev, Marsha Mottel Grade, Bruce Fletcher Johnson
  • Publication number: 20020188156
    Abstract: A method is disclosed for producing phosgene which in one embodiment comprises contacting in at least one reactor a mixture comprising carbon monoxide and chlorine sequentially with a first catalyst followed by contacting the resulting gaseous reaction mixture comprising phosgene with at least one second catalyst of higher relative activity than a first catalyst. In another embodiment a method is disclosed for producing phosgene which comprises contacting in at least one reactor a mixture comprising carbon monoxide and chlorine with at least one catalyst bed comprising a first catalyst wherein at least a portion of said first catalyst is diluted with a second catalyst of higher relative activity than a first catalyst.
    Type: Application
    Filed: January 25, 2002
    Publication date: December 12, 2002
    Inventors: Francis Anthony Via, Grigorii Lev Soloveichik, Philip George Kosky, Walter Vladimir Cicha