Patents by Inventor Guang-Yaw Hwang

Guang-Yaw Hwang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9384962
    Abstract: A method of manufacturing a metal gate is provided. The method includes providing a substrate. Then, a gate dielectric layer is formed on the substrate. A multi-layered stack structure having a work function metal layer is formed on the gate dielectric layer. An O2 ambience treatment is performed on at least one layer of the multi-layered stack structure. A conductive layer is formed on the multi-layered stack structure.
    Type: Grant
    Filed: April 7, 2011
    Date of Patent: July 5, 2016
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Guang-Yaw Hwang, Chun-Hsien Lin, Hung-Ling Shih, Jiunn-Hsiung Liao, Zhi-Cheng Lee, Shao-Hua Hsu, Yi-Wen Chen, Cheng-Guo Chen, Jung-Tsung Tseng, Chien-Ting Lin, Tong-Jyun Huang, Jie-Ning Yang, Tsung-Lung Tsai, Po-Jui Liao, Chien-Ming Lai, Ying-Tsung Chen, Cheng-Yu Ma, Wen-Han Hung, Che-Hua Hsu
  • Patent number: 9312258
    Abstract: A strained silicon substrate structure includes a first transistor and a second transistor disposed on a substrate. The first transistor includes a first gate structure and two first source/drain regions disposed at two sides of the first gate structure. A first source/drain to gate distance is between each first source/drain region and the first gate structure. The second transistor includes a second gate structure and two source/drain doped regions disposed at two side of the second gate structure. A second source/drain to gate distance is between each second source/drain region and the second gate structure. The first source/drain to gate distance is smaller than the second source/drain to gate distance.
    Type: Grant
    Filed: July 8, 2013
    Date of Patent: April 12, 2016
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Guang-Yaw Hwang, Ling-Chun Chou, I-Chang Wang, Shin-Chuan Huang, Jiunn-Hsiung Liao, Shin-Chi Chen, Pau-Chung Lin, Chiu-Hsien Yeh, Chin-Cheng Chien, Chieh-Te Chen
  • Patent number: 8999830
    Abstract: A method of manufacturing a semiconductor device having metal gate includes providing a substrate having a first transistor and a second transistor formed thereon, the first transistor having a first gate trench formed therein, forming a first work function metal layer in the first gate trench, forming a sacrificial masking layer in the first gate trench, removing a portion of the sacrificial masking layer to expose a portion of the first work function metal layer, removing the exposed first function metal layer to form a U-shaped work function metal layer in the first gate trench, and removing the sacrificial masking layer. The first transistor includes a first conductivity type and the second transistor includes a second conductivity type. The first conductivity type and the second conductivity type are complementary.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: April 7, 2015
    Assignee: United Microelectronics Corp.
    Inventors: Po-Jui Liao, Tsung-Lung Tsai, Chien-Ting Lin, Shao-Hua Hsu, Yeng-Peng Wang, Chun-Hsien Lin, Chan-Lon Yang, Guang-Yaw Hwang, Shin-Chi Chen, Hung-Ling Shih, Jiunn-Hsiung Liao, Chia-Wen Liang
  • Patent number: 8952451
    Abstract: A semiconductor device having a metal gate includes a substrate having a first gate trench and a second gate trench formed thereon, a gate dielectric layer respectively formed in the first gate trench and the second gate trench, a first work function metal layer formed on the gate dielectric layer in the first gate trench and the second gate trench, a second work function metal layer respectively formed in the first gate trench and the second gate trench, and a filling metal layer formed on the second work function metal layer. An opening width of the second gate trench is larger than an opening width of the first gate trench. An upper area of the second work function metal layer in the first gate trench is wider than a lower area of the second work function metal layer in the first gate trench.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: February 10, 2015
    Assignee: United Microelectronics Corp.
    Inventors: Po-Jui Liao, Tsung-Lung Tsai, Chien-Ting Lin, Shao-Hua Hsu, Yeng-Peng Wang, Chun-Hsien Lin, Chan-Lon Yang, Guang-Yaw Hwang, Shin-Chi Chen, Hung-Ling Shih, Jiunn-Hsiung Liao, Chia-Wen Liang
  • Publication number: 20140339652
    Abstract: A semiconductor device with oxygen-containing metal gates includes a substrate, a gate dielectric layer and a multi-layered stack structure. The multi-layered stack structure is disposed on the substrate. At least one layer of the multi-layered stack structure includes a work function metal layer. The concentration of oxygen in the side of one layer of the multi-layered stack structure closer to the gate dielectric layer is less than that in the side of one layer of the multi-layered stack structure opposite to the gate dielectric layer.
    Type: Application
    Filed: August 1, 2014
    Publication date: November 20, 2014
    Inventors: Guang-Yaw Hwang, Chun-Hsien Lin, Hung-Ling Shih, Jiunn-Hsiung Liao, Zhi-Cheng Lee, Shao-Hua Hsu, Yi-Wen Chen, Cheng-Guo Chen, Jung-Tsung Tseng, Chien-Ting Lin, Tong-Jyun Huang, Jie-Ning Yang, Tsung-Lung Tsai, Po-Jui Liao, Chien-Ming Lai, Ying-Tsung Chen, Cheng-Yu Ma, Wen-Han Hung, Che-Hua Hsu
  • Patent number: 8802524
    Abstract: The present invention provides a method of manufacturing semiconductor device having metal gates. First, a substrate is provided. A first conductive type transistor having a first sacrifice gate and a second conductive type transistor having a second sacrifice gate are disposed on the substrate. The first sacrifice gate is removed to form a first trench. Then, a first metal layer is formed in the first trench. The second sacrifice gate is removed to form a second trench. Next, a second metal layer is formed in the first trench and the second trench. Lastly, a third metal layer is formed on the second metal layer wherein the third metal layer is filled into the first trench and the second trench.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: August 12, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Po-Jui Liao, Tsung-Lung Tsai, Chien-Ting Lin, Shao-Hua Hsu, Yi-Wei Chen, Hsin-Fu Huang, Tzung-Ying Lee, Min-Chuan Tsai, Chan-Lon Yang, Chun-Yuan Wu, Teng-Chun Tsai, Guang-Yaw Hwang, Chia-Lin Hsu, Jie-Ning Yang, Cheng-Guo Chen, Jung-Tsung Tseng, Zhi-Cheng Lee, Hung-Ling Shih, Po-Cheng Huang, Yi-Wen Chen, Che-Hua Hsu
  • Patent number: 8791013
    Abstract: A pattern forming method is disclosed. The method includes the steps of: forming a dielectric layer on a substrate; forming a first patterned mask on the dielectric layer, wherein the first patterned mask comprises an opening; forming a material layer on the dielectric layer and covering the first patterned mask; forming a second patterned mask on the material layer, wherein the second patterned mask comprises a first aperture; forming a second aperture in the second patterned mask after forming the first aperture, wherein the second aperture and the first aperture comprise a gap therebetween and overlap the opening; and utilizing the second patterned mask as an etching mask for partially removing the material layer and the dielectric layer through the first aperture and the second aperture.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: July 29, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Shin-Chi Chen, Yu-Tsung Lai, Jiunn-Hsiung Liao, Guang-Yaw Hwang
  • Publication number: 20140127892
    Abstract: A method of manufacturing a semiconductor device having metal gate includes providing a substrate having a first transistor and a second transistor formed thereon, the first transistor having a first gate trench formed therein, forming a first work function metal layer in the first gate trench, forming a sacrificial masking layer in the first gate trench, removing a portion of the sacrificial masking layer to expose a portion of the first work function metal layer, removing the exposed first function metal layer to form a U-shaped work function metal layer in the first gate trench, and removing the sacrificial masking layer. The first transistor includes a first conductivity type and the second transistor includes a second conductivity type. The first conductivity type and the second conductivity type are complementary.
    Type: Application
    Filed: December 19, 2013
    Publication date: May 8, 2014
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Po-Jui Liao, Tsung-Lung Tsai, Chien-Ting Lin, Shao-Hua Hsu, Yeng-Peng Wang, Chun-Hsien Lin, Chan-Lon Yang, Guang-Yaw Hwang, Shin-Chi Chen, Hung-Ling Shih, Jiunn-Hsiung Liao, Chia-Wen Liang
  • Patent number: 8704294
    Abstract: A method of manufacturing a semiconductor device having metal gate includes providing a substrate having a first transistor and a second transistor formed thereon, the first transistor having a first gate trench formed therein, forming a first work function metal layer in the first gate trench, forming a sacrificial masking layer in the first gate trench, removing a portion of the sacrificial masking layer to expose a portion of the first work function metal layer, removing the exposed first function metal layer to form a U-shaped work function metal layer in the first gate trench, and removing the sacrificial masking layer. The first transistor includes a first conductivity type and the second transistor includes a second conductivity type. The first conductivity type and the second conductivity type are complementary.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: April 22, 2014
    Assignee: United Microelectronics Corp.
    Inventors: Po-Jui Liao, Tsung-Lung Tsai, Chien-Ting Lin, Shao-Hua Hsu, Yeng-Peng Wang, Chun-Hsien Lin, Chan-Lon Yang, Guang-Yaw Hwang, Shin-Chi Chen, Hung-Ling Shih, Jiunn-Hsiung Liao, Chia-Wen Liang
  • Publication number: 20140103443
    Abstract: A semiconductor device having a metal gate includes a substrate having a first gate trench and a second gate trench formed thereon, a gate dielectric layer respectively formed in the first gate trench and the second gate trench, a first work function metal layer formed on the gate dielectric layer in the first gate trench and the second gate trench, a second work function metal layer respectively formed in the first gate trench and the second gate trench, and a filling metal layer formed on the second work function metal layer. An opening width of the second gate trench is larger than an opening width of the first gate trench. An upper area of the second work function metal layer in the first gate trench is wider than a lower area of the second work function metal layer in the first gate trench.
    Type: Application
    Filed: December 20, 2013
    Publication date: April 17, 2014
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Po-Jui Liao, Tsung-Lung Tsai, Chien-Ting Lin, Shao-Hua Hsu, Yeng-Peng Wang, Chun-Hsien Lin, Chan-Lon Yang, Guang-Yaw Hwang, Shin-Chi Chen, Hung-Ling Shih, Jiunn-Hsiung Liao, Chia-Wen Liang
  • Publication number: 20130292775
    Abstract: A strained silicon substrate structure includes a first transistor and a second transistor disposed on a substrate. The first transistor includes a first gate structure and two first source/drain regions disposed at two sides of the first gate structure. A first source/drain to gate distance is between each first source/drain region and the first gate structure. The second transistor includes a second gate structure and two source/drain doped regions disposed at two side of the second gate structure. A second source/drain to gate distance is between each second source/drain region and the second gate structure. The first source/drain to gate distance is smaller than the second source/drain to gate distance.
    Type: Application
    Filed: July 8, 2013
    Publication date: November 7, 2013
    Inventors: Guang-Yaw Hwang, Ling-Chun Chou, I-Chang Wang, Shin-Chuan Huang, Jiunn-Hsiung Liao, Shin-Chi Chen, Pau-Chung Lin, Chiu-Hsien Yeh, Chin-Cheng Chien, Chieh-Te Chen
  • Patent number: 8552503
    Abstract: A strained silicon substrate structure includes a first transistor and a second transistor disposed on a substrate. The first transistor includes a first gate structure and two first source/drain regions disposed at two sides of the first gate structure. A first source/drain to gate distance is between each first source/drain region and the first gate structure. The second transistor includes a second gate structure and two source/drain doped regions disposed at two side of the second gate structure. A second source/drain to gate distance is between each second source/drain region and the second gate structure. The first source/drain to gate distance is smaller than the second source/drain to gate distance.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: October 8, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Guang-Yaw Hwang, Ling-Chun Chou, I-Chang Wang, Shin-Chuan Huang, Jiunn-Hsiung Liao, Shin-Chi Chen, Pau-Chung Lin, Chiu-Hsien Yeh, Chin-Cheng Chien, Chieh-Te Chen
  • Patent number: 8431460
    Abstract: A semiconductor device comprising a silicon substrate, a gate structure and a heteroatom-containing epitaxial structure is provided. The gate structure is disposed on a surface of the silicon substrate. The heteroatom-containing epitaxial structure is disposed adjacent to the gate structure and has a major portion and an extension portion, wherein the major portion virtual vertically extends downwards into the silicon substrate from the surface; and the extension portion further extends downwards into the silicon substrate with a tapered cross-section continuing with the major portion.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: April 30, 2013
    Assignee: United Microelectronics Corp.
    Inventors: Shin-Chuan Huang, Guang-Yaw Hwang, Hsiang-Ying Wang, Yu-Hsiang Hung, I-Chang Wang
  • Publication number: 20120313178
    Abstract: A method of manufacturing a semiconductor device having metal gate includes providing a substrate having a first transistor and a second transistor formed thereon, the first transistor having a first gate trench formed therein, forming a first work function metal layer in the first gate trench, forming a sacrificial masking layer in the first gate trench, removing a portion of the sacrificial masking layer to expose a portion of the first work function metal layer, removing the exposed first function metal layer to form a U-shaped work function metal layer in the first gate trench, and removing the sacrificial masking layer. The first transistor includes a first conductivity type and the second transistor includes a second conductivity type. The first conductivity type and the second conductivity type are complementary.
    Type: Application
    Filed: June 13, 2011
    Publication date: December 13, 2012
    Inventors: Po-Jui Liao, Tsung-Lung Tsai, Chien-Ting Lin, Shao-Hua Hsu, Yeng-Peng Wang, Chun-Hsien Lin, Chan-Lon Yang, Guang-Yaw Hwang, Shin-Chi Chen, Hung-Ling Shih, Jiunn-Hsiung Liao, Chia-Wen Liang
  • Publication number: 20120302056
    Abstract: A pattern forming method is disclosed. The method includes the steps of: forming a dielectric layer on a substrate; forming a first patterned mask on the dielectric layer, wherein the first patterned mask comprises an opening; forming a material layer on the dielectric layer and covering the first patterned mask; forming a second patterned mask on the material layer, wherein the second patterned mask comprises a first aperture; forming a second aperture in the second patterned mask after forming the first aperture, wherein the second aperture and the first aperture comprise a gap therebetween and overlap the opening; and utilizing the second patterned mask as an etching mask for partially removing the material layer and the dielectric layer through the first aperture and the second aperture.
    Type: Application
    Filed: August 7, 2012
    Publication date: November 29, 2012
    Inventors: Shin-Chi Chen, Yu-Tsung Lai, Jiunn-Hsiung Liao, Guang-Yaw Hwang
  • Publication number: 20120299058
    Abstract: A semiconductor device comprising a silicon substrate, a gate structure and a heteroatom-containing epitaxial structure is provided. The gate structure is disposed on a surface of the silicon substrate. The heteroatom-containing epitaxial structure is disposed adjacent to the gate structure and has a major portion and an extension portion, wherein the major portion virtual vertically extends downwards into the silicon substrate from the surface; and the extension portion further extends downwards into the silicon substrate with a tapered cross-section continuing with the major portion.
    Type: Application
    Filed: May 27, 2011
    Publication date: November 29, 2012
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Shin-Chuan Huang, Guang-Yaw Hwang, Hsiang-Ying Wang, Yu-Hsiang Hung, I-Chang Wang
  • Patent number: 8310012
    Abstract: A semiconductor device includes a semiconductor substrate, a gate dielectric layer formed on the semiconductor substrate, and at least a first conductive-type metal gate formed on the gate dielectric layer. The first conductive-type metal gate includes a filling metal layer and a U-type metal layer formed between the filling metal layer and the gate dielectric layer. A topmost portion of the U-type metal layer is lower than the filling metal layer.
    Type: Grant
    Filed: April 13, 2010
    Date of Patent: November 13, 2012
    Assignee: United Microelectronics Corp.
    Inventors: Guang-Yaw Hwang, Yu-Ru Yang, Jiunn-Hsiung Liao, Pei-Yu Chou
  • Patent number: 8298935
    Abstract: A dual damascene process is disclosed. The process includes the steps of: forming a dielectric layer on a substrate; forming a first patterned mask on the dielectric layer, wherein the first patterned mask comprises an opening; forming a material layer on the dielectric layer and covering the first patterned mask; forming a second patterned mask on the dielectric layer, wherein the second patterned mask comprises a first aperture; forming a second aperture in the second patterned mask, wherein the second aperture and the first aperture comprise a gap therebetween; and utilizing the second patterned mask as etching mask for partially removing the material layer and the dielectric layer through the first aperture and the second aperture.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: October 30, 2012
    Assignee: United Microelectronics Corp.
    Inventors: Shin-Chi Chen, Yu-Tsung Lai, Jiunn-Hsiung Liao, Guang-Yaw Hwang
  • Publication number: 20120256276
    Abstract: A method of manufacturing a metal gate is provided. The method includes providing a substrate. Then, a gate dielectric layer is formed on the substrate. A multi-layered stack structure having a work function metal layer is formed on the gate dielectric layer. An O2 ambience treatment is performed on at least one layer of the multi-layered stack structure. A conductive layer is formed on the multi-layered stack structure.
    Type: Application
    Filed: April 7, 2011
    Publication date: October 11, 2012
    Inventors: Guang-Yaw Hwang, Chun-Hsien Lin, Hung-Ling Shih, Jiunn-Hsiung Liao, Zhi-Cheng Lee, Shao-Hua Hsu, Yi-Wen Chen, Cheng-Guo Chen, Jung-Tsung Tseng, Chien-Ting Lin, Tong-Jyun Huang, Jie-Ning Yang, Tsung-Lung Tsai, Po-Jui Liao, Chien-Ming Lai, Ying-Tsung Chen, Cheng-Yu Ma, Wen-Han Hung, Che-Hua Hsu
  • Publication number: 20120244669
    Abstract: The present invention provides a method of manufacturing semiconductor device having metal gates. First, a substrate is provided. A first conductive type transistor having a first sacrifice gate and a second conductive type transistor having a second sacrifice gate are disposed on the substrate. The first sacrifice gate is removed to form a first trench. Then, a first metal layer is formed in the first trench. The second sacrifice gate is removed to form a second trench. Next, a second metal layer is formed in the first trench and the second trench. Lastly, a third metal layer is formed on the second metal layer wherein the third metal layer is filled into the first trench and the second trench.
    Type: Application
    Filed: March 22, 2011
    Publication date: September 27, 2012
    Inventors: Po-Jui Liao, Tsung-Lung Tsai, Chien-Ting Lin, Shao-Hua Hsu, Yi-Wei Chen, Hsin-Fu Huang, Tzung-Ying Lee, Min-Chuan Tsai, Chan-Lon Yang, Chun-Yuan Wu, Teng-Chun Tsai, Guang-Yaw Hwang, Chia-Lin Hsu, Jie-Ning Yang, Cheng-Guo Chen, Jung-Tsung Tseng, Zhi-Cheng Lee, Hung-Ling Shih, Po-Cheng Huang, Yi-Wen Chen, Che-Hua Hsu