Patents by Inventor Guanyun Wang

Guanyun Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11729904
    Abstract: An efficient fabrication technique, including an optional design step, is used to create highly customizable wearable electronics. The method of fabrication utilizes rapid laser machining and adhesion-controlled soft materials. The method produces well-aligned, multi-layered materials created from 2D and 3D elements that stretch and bend while seamlessly integrating with rigid components such as microchip integrated circuits (IC), discrete electrical components, and interconnects. The design step can be used to create a 3D device that conforms to different-shaped body parts. These techniques are applied using commercially available materials. These methods enable custom wearable electronics while offering versatility in design and functionality for a variety of bio-monitoring applications.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: August 15, 2023
    Assignee: CARNEGIE MELLON UNIVERSITY
    Inventors: Eric J. Markvicka, Michael D. Bartlett, Carmel Majidi, Lining Yao, Guanyun Wang, Yi-Chin Lee, Gierad Laput
  • Publication number: 20220354134
    Abstract: Methods for creating semolina flour-based shape-changing food from a multi-layered dough with at least one grooved surface. The dough layers have difference compositions including natural, staple and edible ingredients. The dough is exposed to stimuli during dehydration (e.g., baking) or hydration (e.g., boiling) processes.
    Type: Application
    Filed: June 22, 2020
    Publication date: November 10, 2022
    Applicants: CARNEGIE MELLON UNIVERSITY, BARILLA G. & R. FRATELLI S.p.A.
    Inventors: Lining Yao, Humphrey Yang, Youngwook Do, Catherine Mondoa, Guanyun Wang, Jianxun Cui, Wen Wang, Yi-Chin Lee, Ye Tao, Claudia Berti, Elena Berte, Elena Bergamini
  • Publication number: 20220338526
    Abstract: Methods for creating flour-based shape-changing food by creating grooves in the surface of a dough layer before exposing the dough to stimuli during dehydration (e.g., baking) or hydration (e.g., boiling) processes. A tailored computational design tool, digital fabrication platform and mold for use with the methods also are provided.
    Type: Application
    Filed: June 22, 2020
    Publication date: October 27, 2022
    Applicant: CARNEGIE MELLON UNIVERSITY
    Inventors: Lining Yao, Humphrey Yang, Youngwook Do, Catherine Mondoa, Guanyun Wang, Jianxun Cui, Wen Wang, Ye Tao, Yi-Chin Lee
  • Publication number: 20220322599
    Abstract: The present invention comprises an artificial seed device, a drilling process for the artificial seed device and a fabrication method for the artificial seed device.
    Type: Application
    Filed: April 11, 2022
    Publication date: October 13, 2022
    Applicant: CARNEGIE MELLON UNIVERSITY
    Inventors: Lining Yao, Danli Luo, Jianzhe Gu, Fang Qin, Guanyun Wang
  • Publication number: 20180154627
    Abstract: A composite film includes a substrate that is not responsive to relative humidity, and also one or more layers of hygromorphic material. The hygromorphic material expands in response to an increase in relative humidity and contracts in response to a decrease in relative humidity. In some cases, the composite film is bi-layer or tri-layer. The composite films are fabricated such that they undergo a desired bending pattern in response to changes in relative humidity. In some cases, these bending patterns are combinations of two bending primitives: a smooth curve and a sharply angled curve. These two primitives are combined to create a variety of shape transformations including 1D linear transformation, 2D surface expansion and contraction, 2.5D texture change and 3D folding. Any type of hygromorphic material may be employed, including living gram positive and gram negative bacterial cells, yeast cells, plant cells, mammalian cells, cell debris, or hydrogel.
    Type: Application
    Filed: January 26, 2018
    Publication date: June 7, 2018
    Inventors: Lining Yao, Wen Wang, Jifei Ou, Chin-Yi Cheng, Guanyun Wang, Hiroshi Ishii, Daniel Wang, Helene Steiner, Clark Della Silva
  • Patent number: 9931829
    Abstract: A composite film includes a substrate that is not responsive to relative humidity, and also one or more layers of hygromorphic material. The hygromorphic material expands in response to an increase in relative humidity and contracts in response to a decrease in relative humidity. In some cases, the composite film is bi-layer or tri-layer. The composite films are fabricated such that they undergo a desired bending pattern in response to changes in relative humidity. In some cases, these bending patterns are combinations of two bending primitives: a smooth curve and a sharply angled curve. These two primitives are combined to create a variety of shape transformations including 1D linear transformation, 2D surface expansion and contraction, 2.5D texture change and 3D folding. Any type of hygromorphic material may be employed, including living gram positive and gram negative bacterial cells, yeast cells, plant cells, mammalian cells, cell debris, or hydrogel.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: April 3, 2018
    Assignee: Massachusetts Institute of Technology
    Inventors: Lining Yao, Wen Wang, Jifei Ou, Chin-Yi Cheng, Guanyun Wang, Hiroshi Ishii, Daniel Wang, Helene Steiner, Clark Della Silva
  • Publication number: 20160121546
    Abstract: A composite film includes a substrate that is not responsive to relative humidity, and also one or more layers of hygromorphic material. The hygromorphic material expands in response to an increase in relative humidity and contracts in response to a decrease in relative humidity. In some cases, the composite film is bi-layer or tri-layer. The composite films are fabricated such that they undergo a desired bending pattern in response to changes in relative humidity. In some cases, these bending patterns are combinations of two bending primitives: a smooth curve and a sharply angled curve. These two primitives are combined to create a variety of shape transformations including 1D linear transformation, 2D surface expansion and contraction, 2.5D texture change and 3D folding. Any type of hygromorphic material may be employed, including living gram positive and gram negative bacterial cells, yeast cells, plant cells, mammalian cells, cell debris, or hydrogel.
    Type: Application
    Filed: October 29, 2015
    Publication date: May 5, 2016
    Applicant: Massachusetts Institute of Technology
    Inventors: Lining Yao, Wen Wang, Jifei Ou, Chin-Yi Cheng, Guanyun Wang, Hiroshi Ishii, Daniel Wang, Helene Steiner, Clark Della Silva