Patents by Inventor Gudrun Lange

Gudrun Lange has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240067877
    Abstract: A lighting device includes a phosphor having the general molecular formula (MA)a(MB)b(MC)c(MD)d(TA)e(TB)f(TC)g(TD)h(TE)i(TF)j(XA)k(XB)l(XC)m(X D)n:E. MA is selected from a group of monovalent metals, MB is selected from a group of divalent metals, MC is selected from a group of trivalent metals, MD is selected from a group of tetravalent metals, TA is selected from a group of monovalent metals, TB is selected from a group of divalent metals, TC is selected from a group of trivalent metals, TD is selected from a group of tetravalent metals, TE is selected from a group of pentavalent elements, TF is selected from a group of hexavalent elements, XA is selected from a group of elements which comprises halogens, XB is selected from a group of elements which comprises O, S and combinations thereof, XC=N and XD=C and E=Eu, Ce, Yb and/or Mn.
    Type: Application
    Filed: November 6, 2023
    Publication date: February 29, 2024
    Inventors: Markus SEIBALD, Simon PESCHKE, Gregor HOERDER, Gina Maya ACHRAINER, Klaus WURST, Dominik BAUMANN, Tim FIEDLER, Stefan LANGE, Hubert HUPPERTZ, Daniel DUTZLER, Thorsten SCHROEDER, Daniel BICHLER, Gudrun PLUNDRICH
  • Patent number: 11371056
    Abstract: In the present invention, HPPD polypeptides and plants containing them showing a full tolerance against one or more HPPD inhibitor herbicides belonging to various chemical classes are described. A set of mutant HPPD polypeptides have been designed which have either no or only a significantly reduced affinity to HPPD inhibitor herbicides and, at the same time, the rate of dissociation of the HPPD inhibitors of the mutant HPPD polypeptide is increased to such an extent that the HPPD inhibitors no longer act as slow-binding or slow, tight-binding inhibitors but, instead of this, have become fully reversible inhibitors. In particular, isolated polynucleotides encoding mutant HPPD polypeptides conferring tolerance to HPPD inhibitor herbicides belonging to various chemical classes are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: June 28, 2022
    Assignee: BASF Agricultural Solutions Seed US LLC
    Inventors: Marc Linka, Fabien Poree, Bernd Laber, Gudrun Lange, Ernst Weber, Michael Strerath, Sandra Geske, Heike Balven-Ross, Nina Wobst, Wayne Coco, Nikolaus Pawlowski, Jan Tebbe, Christina Thies, Manuel Dubald
  • Patent number: 11180770
    Abstract: In the present invention, HPPD polypeptides and plants containing them showing a full tolerance against one or more HPPD inhibitor herbicides belonging to various chemical classes are described. A set of mutant HPPD polypeptides have been designed which have either no or only a significantly reduced affinity to HPPD inhibitor herbicides and, at the same time, the rate of dissociation of the HPPD inhibitors of the mutant HPPD polypeptide is increased to such an extent that the HPPD inhibitors no longer act as slow-binding or slow, tight-binding inhibitors but, instead of this, have become fully reversible inhibitors. In particular, isolated polynucleotides encoding mutant HPPD polypeptides conferring tolerance to HPPD inhibitor herbicides belonging to various chemical classes are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: November 23, 2021
    Assignee: BASF Agricultural Solutions Seed US LLC
    Inventors: Marc Linka, Fabien Poree, Bernd Laber, Gudrun Lange, Christina Thies, Ernst Weber, Michael Strerath, Sandra Geske, Heike Balven-Ross, Nina Wobst, Wayne Coco, Nikolaus Pawlowski, Jan Tebbe, Manuel Dubald
  • Patent number: 10793872
    Abstract: Compositions and methods for conferring herbicide tolerance to bacteria, plants, plant cells, tissues and seeds are provided. Compositions include polynucleotides encoding herbicide tolerance polypeptides, vectors comprising those polynucleotides, and host cells comprising the vectors. The nucleotide sequences of the invention can be used in DNA constructs or expression cassettes for transformation and expression in organisms, including microorganisms and plants. Compositions also include transformed bacteria, plants, plant cells, tissues, and seeds. In particular, isolated polynucleotides encoding HPPD inhibitor tolerance polypeptides are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: October 6, 2020
    Assignee: BASF Agricultural Solutions Seed US LLC
    Inventors: Fabien Poree, Volker Heinrichs, Gudrun Lange, Bernd Laber, Cheryl Peters, Laura Schouten
  • Publication number: 20200239905
    Abstract: In the present invention, HPPD polypeptides and plants containing them showing a full tolerance against one or more HPPD inhibitor herbicides belonging to various chemical classes are described. A set of mutant HPPD polypeptides have been designed which have either no or only a significantly reduced affinity to HPPD inhibitor herbicides and, at the same time, the rate of dissociation of the HPPD inhibitors of the mutant HPPD polypeptide is increased to such an extent that the HPPD inhibitors no longer act as slow-binding or slow, tight-binding inhibitors but, instead of this, have become fully reversible inhibitors. In particular, isolated polynucleotides encoding mutant HPPD polypeptides conferring tolerance to HPPD inhibitor herbicides belonging to various chemical classes are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.
    Type: Application
    Filed: March 1, 2018
    Publication date: July 30, 2020
    Applicant: BASF Agricultural Solutions Seed US LLC
    Inventors: Marc Linka, Fabien Poree, Bernd Laber, Gudrun Lange, Ernst Weber, Michael Strerath, Sandra Geske, Heike Balven-Ross, Nina Wobst, Wayne Coco, Nikolaus Pawlowski, Jan Tebbe, Christina Thies, Manuel Dubald
  • Patent number: 10597674
    Abstract: In the present invention, HPPD polypeptides and plants containing them showing a full tolerance against one or more HPPD inhibitor herbicides belonging to various chemical classes are described. A set of mutant HPPD polypeptides have been designed which have either no or only a significantly reduced affinity to HPPD inhibitor herbicides and, at the same time, the rate of dissociation of the HPPD inhibitors of the mutant HPPD polypeptide is increased to such an extent that the HPPD inhibitors no longer act as slow-binding or slow, tight-binding inhibitors but, instead of this, have become fully reversible inhibitors. In particular, isolated polynucleotides encoding mutant HPPD polypeptides conferring tolerance to HPPD inhibitor herbicides belonging to various chemical classes are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.
    Type: Grant
    Filed: September 8, 2016
    Date of Patent: March 24, 2020
    Assignee: BASF Agricultural Solutions Seed, US LLC
    Inventors: Marc Linka, Fabien Poree, Bernd Laber, Gudrun Lange, Jan Tebbe, Wayne Coco, Michael Strerath, Ernst Weber, Nikolaus Pawlowski, Sandra Geske, Heike Balven-Ross, Nina Wobst, Christina Thies, Manuel Dubald
  • Publication number: 20200063155
    Abstract: In the present invention, HPPD polypeptides and plants containing them showing a full tolerance against one or more HPPD inhibitor herbicides belonging to various chemical classes are described. A set of mutant HPPD polypeptides have been designed which have either no or only a significantly reduced affinity to HPPD inhibitor herbicides and, at the same time, the rate of dissociation of the HPPD inhibitors of the mutant HPPD polypeptide is increased to such an extent that the HPPD inhibitors no longer act as slow-binding or slow, tight-binding inhibitors but, instead of this, have become fully reversible inhibitors. In particular, isolated polynucleotides encoding mutant HPPD polypeptides conferring tolerance to HPPD inhibitor herbicides belonging to various chemical classes are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.
    Type: Application
    Filed: March 1, 2018
    Publication date: February 27, 2020
    Applicant: BASF Agricultural Solutions Seed US LLC
    Inventors: Marc Linka, Fabien Poree, Bernd Laber, Gudrun Lange, Christina Thies, Ernst Weber, Michael Strerath, Sandra Geske, Heike Balven-Ross, Nina Wobst, Wayne Coco, Nikolaus Pawlowski, Jan Tebbe, Manuel Dubald
  • Publication number: 20200002715
    Abstract: In the present invention, HPPD enzymes and plants containing them showing a full tolerance against several classes of HPPD-inhibitors are described. A set of HPPD enzymes have been designed which have either no or only a significantly reduced affinity to HPPD inhibitors and, at the same time, the rate of dissociation of the HPPD inhibitors of the enzyme is increased to such an extent that the HPPD inhibitors no longer act as slow-binding or slow, tight-binding inhibitors but, instead of this, have become fully reversible inhibitors. In particular, isolated polynucleotides encoding HPPD inhibitor tolerance polypeptides are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.
    Type: Application
    Filed: August 12, 2019
    Publication date: January 2, 2020
    Inventors: Fabien POREE, Bernd LABER, Gudrun LANGE, Manuel DUBALD, Roxanne ARMSTRONG
  • Patent number: 10400249
    Abstract: In the present invention, HPPD enzymes and plants containing them showing a full tolerance against several classes of HPPD-inhibitors are described. A set of HPPD enzymes have been designed which have either no or only a significantly reduced affinity to HPPD inhibitors and, at the same time, the rate of dissociation of the HPPD inhibitors of the enzyme is increased to such an extent that the HPPD inhibitors no longer act as slow-binding or slow, tight-binding inhibitors but, instead of this, have become fully reversible inhibitors. In particular, isolated polynucleotides encoding HPPD inhibitor tolerance polypeptides are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: September 3, 2019
    Assignee: BASF AGRICULTURAL SOLUTIONS SEED, US LLC
    Inventors: Fabien Poree, Bernd Laber, Gudrun Lange, Manuel Dubald, Roxanne Armstrong
  • Publication number: 20180208937
    Abstract: In the present invention, HPPD polypeptides and plants containing them showing a full tolerance against one or more HPPD inhibitor herbicides belonging to various chemical classes are described. A set of mutant HPPD polypeptides have been designed which have either no or only a significantly reduced affinity to HPPD inhibitor herbicides and, at the same time, the rate of dissociation of the HPPD inhibitors of the mutant HPPD polypeptide is increased to such an extent that the HPPD inhibitors no longer act as slow-binding or slow, tight-binding inhibitors but, instead of this, have become fully reversible inhibitors. In particular, isolated polynucleotides encoding mutant HPPD polypeptides conferring tolerance to HPPD inhibitor herbicides belonging to various chemical classes are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.
    Type: Application
    Filed: September 8, 2016
    Publication date: July 26, 2018
    Inventors: Marc Linka, Fabien POREE, Bernd LABER, Gudrun LANGE, Jan TEBBE, Wayne COCO, Michael STRERATH, Ernst WEBER, Nikolaus PAWLOWSKI, Sandra GESKE, Heike BALVEN-ROSS, Nina WOBST, Christina THIES, Manuel DUBALD
  • Publication number: 20170016018
    Abstract: In the present invention, HPPD enzymes and plants containing them showing a full tolerance against several classes of HPPD-inhibitors are described. A set of HPPD enzymes have been designed which have either no or only a significantly reduced affinity to HPPD inhibitors and, at the same time, the rate of dissociation of the HPPD inhibitors of the enzyme is increased to such an extent that the HPPD inhibitors no longer act as slow-binding or slow, tight-binding inhibitors but, instead of this, have become fully reversible inhibitors. In particular, isolated polynucleotides encoding HPPD inhibitor tolerance polypeptides are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.
    Type: Application
    Filed: March 9, 2015
    Publication date: January 19, 2017
    Applicant: BAYER CROPSCIENCE AKTIENGESELLSCHAFT
    Inventors: Fabien POREE, Bernd LABER, Gudrun LANGE, Manuel DUBALD, Roxanne ARMSTRONG
  • Publication number: 20150267180
    Abstract: Compositions and methods for conferring herbicide tolerance to bacteria, plants, plant cells, tissues and seeds are provided. Compositions include polynucleotides encoding herbicide tolerance polypeptides, vectors comprising those polynucleotides, and host cells comprising the vectors. The nucleotide sequences of the invention can be used in DNA constructs or expression cassettes for transformation and expression in organisms, including microorganisms and plants. Compositions also include transformed bacteria, plants, plant cells, tissues, and seeds. In particular, isolated polynucleotides encoding HPPD inhibitor tolerance polypeptides are provided. Additionally, amino acid sequences corresponding to the polynucleotides are encompassed.
    Type: Application
    Filed: September 13, 2013
    Publication date: September 24, 2015
    Inventors: Fabien Poree, Volker Heinrichs, Gudrun Lange, Bernd Laber, Cheryl Peters, Laura Schouten
  • Publication number: 20150167016
    Abstract: The present invention relates to nucleic acid sequences encoding a hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, abbreviated herein as HPPD) obtained from Euryarchaeota belonging to the family Picrophilaceae, as well as the proteins encoded thereby, and to a chimeric gene which comprises such nucleic acid sequence, and to the use of such nucleic acid sequences, proteins or chimeric genes for obtaining plants which are tolerant to HPPD inhibitor herbicides.
    Type: Application
    Filed: October 6, 2014
    Publication date: June 18, 2015
    Inventors: Fabien POREE, Bernd Laber, Nathalie Knittel-Ottleben, Gudrun Lange, Arno Schulz, Ruediger Hain
  • Publication number: 20150159167
    Abstract: The present invention relates to nucleic acid sequences encoding a hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, abbreviated herein as HPPD) obtained from bacteria belonging to the subfamily Synechococcoideae, as well as the proteins encoded thereby, and to a chimeric gene which comprises such nucleic acid sequence, and to the use of such nucleic acid sequences, proteins or chimeric genes for obtaining plants which are tolerant to HPPD inhibitor herbicides.
    Type: Application
    Filed: September 29, 2014
    Publication date: June 11, 2015
    Inventors: Fabien POREE, Bernd Laber, Nathalie Knittel-Ottleben, Gudrun Lange, Arno Schulz, Ruediger Hain
  • Publication number: 20150159145
    Abstract: The present invention relates to nucleic acid sequences encoding a hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, abbreviated herein as HPPD) obtained from bacteria belonging to the genus Rhodococcus as well as the proteins encoded thereby, and to a chimeric gene which comprises such nucleic acid sequence, and to the use of such nucleic acid sequences, proteins or chimeric genes for obtaining plants which are tolerant to HPPD inhibitor herbicides.
    Type: Application
    Filed: September 29, 2014
    Publication date: June 11, 2015
    Inventors: Fabien POREE, Bernd Laber, Nathalie Knittel-Ottleben, Gudrun Lange, Arno Schulz, Ruediger Hain
  • Publication number: 20150159168
    Abstract: The present invention relates to nucleic acid sequences encoding a hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, abbreviated herein as HPPD) obtained from protists belonging to the family Blepharismidae, as well as the proteins encoded thereby, and to a chimeric gene which comprises such nucleic acid sequence, and to the use of such nucleic acid sequences, proteins or chimeric genes for obtaining plants which are tolerant to HPPD inhibitor herbicides.
    Type: Application
    Filed: October 6, 2014
    Publication date: June 11, 2015
    Inventors: Fabien POREE, Bernd Laber, Nathalie Knittel-Ottleben, Gudrun Lange, Arno Schulz, Ruediger Hain
  • Publication number: 20150159169
    Abstract: present invention relates to nucleic acid sequences encoding a hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, abbreviated herein as HPPD) obtained from bacteria belonging to the genus Kordia, as well as the proteins encoded thereby, and to a chimeric gene which comprises such nucleic acid sequence, and to the use of such nucleic acid sequences, proteins or chimeric genes for obtaining plants which are tolerant to HPPD inhibitor herbicides.
    Type: Application
    Filed: October 10, 2014
    Publication date: June 11, 2015
    Inventors: Fabien POREE, Bernd Laber, Nathalie Knittel-Ottleben, Gudrun Lange, Arno Schulz, Ruediger Hain
  • Patent number: 8859466
    Abstract: The present invention relates to novel oxaspirocyclic spirophenyl-substituted tetramic acid and tetronic acid derivatives of the formula (I) in which W, X, Y, Z, A, B, D, Q1, Q2, and G have the meanings given above, to a plurality of processes for their preparation and to their use as pesticides and/or herbicides. The invention also provides selective herbicidal compositions comprising, firstly, oxaspirocyclic spirophenyl-substituted tetramic acid and tetronic acid derivatives and, secondly, a crop plant compatibility-improving compound. The invention furthermore relates to increasing the activity of crop protection compositions comprising compounds of the formula (I) by addition of ammonium salts or phosphonium salts and, if appropriate, penetrants.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: October 14, 2014
    Assignee: Bayer CropScience AG
    Inventors: Thomas Bretschneider, Reiner Fischer, Gudrun Lange, Stefan Lehr, Christian Arnold, Dieter Feucht, Eva-Maria Franken, Martin Jeffrey Hills, Heinz Kehne, Olga Malsam, Christopher Hugh Rosinger, Jan Dittgen, Ulrich Görgens, Isolde Häuser-Hahn
  • Patent number: 8859856
    Abstract: The present invention relates to nucleic acid sequences encoding a hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, abbreviated herein as HPPD) obtained from bacteria belonging to the genus Kordia, as well as the proteins encoded thereby, and to a chimeric gene which comprises such nucleic acid sequence, and to the use of such nucleic acid sequences, proteins or chimeric genes for obtaining plants which are tolerant to HPPD inhibitor herbicides.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: October 14, 2014
    Assignee: Bayer CropScience AG
    Inventors: Fabien Poree, Bernd Laber, Nathalie Knittel-Ottleben, Gudrun Lange, Arno Schulz, Ruediger Hain
  • Patent number: 8853495
    Abstract: The present invention relates to nucleic acid sequences encoding a hydroxyphenylpyruvate dioxygenase (EC 1.13.11.27, abbreviated herein as HPPD) obtained from Euryarchaeota belonging to the family Picrophilaceae, as well as the proteins encoded thereby, and to a chimeric gene which comprises such nucleic acid sequence, and to the use of such nucleic acid sequences, proteins or chimeric genes for obtaining plants which are tolerant to HPPD inhibitor herbicides.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: October 7, 2014
    Assignee: Bayer CropScience AG
    Inventors: Fabien Poree, Bernd Laber, Nathalie Knittel-Ottleben, Gudrun Lange, Arno Schulz, Ruediger Hain