Patents by Inventor Gunnar Heydrich

Gunnar Heydrich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11884611
    Abstract: A reactor for performing a gas/liquid biphasic high-pressure reaction with a foaming medium, comprising an interior formed by a cylindrical, vertically oriented elongate shell, a bottom and a cap, wherein the interior is divided by internals into a backmixed zone and a zone of limited backmixing, wherein the backmixed zone and the zone of limited backmixing are consecutively traversable by the reaction mixture, wherein the backmixed zone comprises means for introducing gas and liquid and a gas outlet and also comprises at least one mixing apparatus selected from a stirrer, a jet nozzle and means for injecting the gas, and the zone of limited backmixing comprises a reaction product outlet, a first cylindrical internal element which in the interior extends in the longitudinal direction of the reactor and which delimits the zone of limited backmixing from the backmixed zone, backmixing-preventing second internal elements in the form of random packings, structured packings or liquid-permeable trays arranged in th
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: January 30, 2024
    Assignee: BASF SE
    Inventors: Oliver Bey, Peter Zehner, Michael Acker, Rocco Paciello, Mathias Schelwies, Martin Haubner, Guenter Wegner, Gerd Tebben, Gunnar Heydrich, Georg Seeber
  • Patent number: 11766653
    Abstract: A process for performing a continuous gas/liquid biphasic high-pressure reaction, wherein a gas and a liquid are introduced into a backmixed zone of a reactor and in the backmixed zone the gas is dispersed in the liquid by stirring, injection of gas and/or a liquid jet, a reaction mixture consecutively traverses the backmixed zone and a zone of limited backmixing, and a liquid reaction product is withdrawn at a reaction product outlet of the zone of limited backmixing, wherein the reactor comprises: an interior formed by a cylindrical vertically oriented elongate shell, a bottom and a cap, wherein the interior is divided by means of internals into the backmixed zone, the zone of limited backmixing and a cavity, a first cylindrical internal element which in the interior extends in the longitudinal direction of the reactor and which delimits the zone of limited backmixing from the backmixed zone, backmixing-preventing second internal elements in the form of random packings, structured packings or liquid-permeab
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: September 26, 2023
    Assignee: BASF SE
    Inventors: Oliver Bey, Peter Zehner, Andreas Keller, Stephanie Renz, Mathias Schelwies, Rocco Paciello, Martin Haubner, Guenter Wegner, Gerd Tebben, Gunnar Heydrich, Georg Seeber
  • Patent number: 11529607
    Abstract: A reactor for performing a reaction between two immiscible fluids of different density, comprising an interior formed by a cylindrical, vertically oriented elongate shell, a bottom and a cap, wherein the interior is divided by internals into a backmixed zone, a zone of limited backmixing preferably arranged below the backmixed zone and a plug-flow zone which are at least consecutively traversable by one of the fluids, wherein the backmixed zone comprises at least one inlet and the plug-flow zone comprises an outlet and the backmixed zone comprises at least one mixing apparatus selected from a stirrer, a jet nozzle and means for injecting the fluid of lower density, a first cylindrical internal element which in the interior extends in the longitudinal direction of the reactor, which delimits the zone of limited backmixing from the plug-flow zone and which comprises a first passage to the backmixed zone and a second passage to the plug-flow zone, a second internal element which delimits the backmixed zone from
    Type: Grant
    Filed: September 3, 2019
    Date of Patent: December 20, 2022
    Assignee: BASF SE
    Inventors: Oliver Bey, Peter Zehner, Mathias Schelwies, Rocco Paciello, Martin Haubner, Guenter Wegner, Gerd Tebben, Gunnar Heydrich, Georg Seeber, Michael Acker
  • Publication number: 20210371361
    Abstract: A reactor for performing a gas/liquid biphasic high-pressure reaction with a foaming medium, comprising an interior formed by a cylindrical, vertically oriented elongate shell, a bottom and a cap, wherein the interior is divided by internals into a backmixed zone and a zone of limited backmixing, wherein the backmixed zone and the zone of limited backmixing are consecutively traversable by the reaction mixture, wherein the backmixed zone comprises means for introducing gas and liquid and a gas outlet and also comprises at least one mixing apparatus selected from a stirrer, a jet nozzle and means for injecting the gas, and the zone of limited backmixing comprises a reaction product outlet, a first cylindrical internal element which in the interior extends in the longitudinal direction of the reactor and which delimits the zone of limited backmixing from the backmixed zone, backmixing-preventing second internal elements in the form of random packings, structured packings or liquid-permeable trays arranged in th
    Type: Application
    Filed: September 3, 2019
    Publication date: December 2, 2021
    Inventors: Oliver BEY, Peter ZEHNER, Michael ACKER, Rocco PACIELLO, Mathias SCHELWIES, Martin HAUBNER, Guenter WEGNER, Gerd TEBBEN, Gunnar HEYDRICH, Georg SEEBER
  • Publication number: 20210354101
    Abstract: A process for performing a continuous gas/liquid biphasic high-pressure reaction, wherein a gas and a liquid are introduced into a backmixed zone of a reactor and in the backmixed zone the gas is dispersed in the liquid by stirring, injection of gas and/or a liquid jet, a reaction mixture consecutively traverses the backmixed zone and a zone of limited backmixing, and a liquid reaction product is withdrawn at a reaction product outlet of the zone of limited backmixing, wherein the reactor comprises: an interior formed by a cylindrical vertically oriented elongate shell, a bottom and a cap, wherein the interior is divided by means of internals into the backmixed zone, the zone of limited backmixing and a cavity, a first cylindrical internal element which in the interior extends in the longitudinal direction of the reactor and which delimits the zone of limited backmixing from the backmixed zone, backmixing-preventing second internal elements in the form of random packings, structured packings or liquid-permeab
    Type: Application
    Filed: September 3, 2019
    Publication date: November 18, 2021
    Inventors: Oliver BEY, Peter ZEHNER, Andreas KELLER, Stephanie RENZ, Mathias SCHELWIES, Rocco PACIELLO, Martin HAUBNER, Guenter WEGNER, Gerd TEBBEN, Gunnar HEYDRICH, Georg SEEBER
  • Publication number: 20210275987
    Abstract: A reactor for performing a reaction between two immiscible fluids of different density, comprising an interior formed by a cylindrical, vertically oriented elongate shell, a bottom and a cap, wherein the interior is divided by internals into a backmixed zone, a zone of limited backmixing preferably arranged below the backmixed zone and a plug-flow zone which are at least consecutively traversable by one of the fluids, wherein the backmixed zone comprises at least one inlet and the plug-flow zone comprises an outlet and the backmixed zone comprises at least one mixing apparatus selected from a stirrer, a jet nozzle and means for injecting the fluid of lower density, a first cylindrical internal element which in the interior extends in the longitudinal direction of the reactor, which delimits the zone of limited backmixing from the plug-flow zone and which comprises a first passage to the backmixed zone and a second passage to the plug-flow zone, a second internal element which delimits the backmixed zone from
    Type: Application
    Filed: September 3, 2019
    Publication date: September 9, 2021
    Inventors: Oliver BEY, Peter ZEHNER, Mathias SCHELWIES, Rocco PACIELLO, Martin HAUBNER, Guenter WEGNER, Gerd TEBBEN, Gunnar HEYDRICH, Georg SEEBER, Michael ACKER
  • Publication number: 20210198169
    Abstract: The present invention relates to a process for producing menthol particles stabilized against caking, wherein menthol particles are, following shaping, stored for at least 7 days at a temperature of 0 to 30° C., after which the menthol particles are supplied with a minimum input of mechanical energy. The present invention further relates to storage-stable menthol particles and to the use of said menthol particles in household and consumer goods of all kinds.
    Type: Application
    Filed: August 14, 2019
    Publication date: July 1, 2021
    Inventors: Sebastian WLOCH, Gunnar HEYDRICH, Gerd TEBBEN, Matthias RAULS
  • Patent number: 10669222
    Abstract: The present invention relates to a process for enriching enantiomers from an enantiomer mixture by a fractionating melt crystallization in a melt crystallization apparatus. The invention specifically relates to a process for producing an enantiomer-enriched chiral terpene, in particular of D/L-Isopulegol. The process comprises: i) a crystallization step to obtain a crystallizate and a mother melt and removal of the mother melt from the crystallizate to afford a mother melt fraction; ii) sweating of the crystallizate obtained in step i) to afford a molten sweating fraction and iii) subsequent melting of the sweated crystallizate to afford a molten crystallizate fraction, wherein the optical rotation at least of the sweating fraction is determined online using a polarimeter and the changeover from step ii) to step iii) is controlled online by means of at least one control unit.
    Type: Grant
    Filed: October 5, 2017
    Date of Patent: June 2, 2020
    Assignee: BASF SE
    Inventors: Sebastian Wloch, Gunnar Heydrich, Matthias Rauls
  • Publication number: 20200039904
    Abstract: The present invention relates to a process for enriching enantiomers from an enantiomer mixture by a fractionating melt crystallization in a melt crystallization apparatus. The invention specifically relates to a process for producing an enantiomer-enriched chiral terpene, in particular of D/L-Isopulegol. The process comprises: i) a crystallization step to obtain a crystallizate and a mother melt and removal of the mother melt from the crystallizate to afford a mother melt fraction; ii) sweating of the crystallizate obtained in step i) to afford a molten sweating fraction and iii) subsequent melting of the sweated crystallizate to afford a molten crystallizate fraction, wherein the optical rotation at least of the sweating fraction is determined online using a polarimeter and the changeover from step ii) to step iii) is controlled online by means of at least one control unit.
    Type: Application
    Filed: October 5, 2017
    Publication date: February 6, 2020
    Inventors: Sebastian WLOCH, Gunnar HEYDRICH, Matthias RAULS
  • Patent number: 10301244
    Abstract: The present invention relates to a process for the preparation of an optically active carbonyl compound by asymmetric hydrogenation of a prochiral ?,?-unsaturated carbonyl compound with hydrogen in the presence of at least one optically active transition metal catalyst that is soluble in the reaction mixture and which has rhodium as catalytically active transition metal and a chiral, bidentate bisphosphine ligand, wherein the reaction mixture during the hydrogenation of the prochiral ?,?-unsaturated carbonyl compound additionally comprises at least one compound of the general formula (I): in which R1, R2: are identical or different and are C6- to C10-aryl which is unsubstituted or carries one or more, e.g. 1, 2, 3, 4 or 5, substituents which are selected from C1- to C6-alkyl, C3- to C6-cycloalkyl, C6- to C10-aryl, C1- to C6-alkoxy and amino; Z is a group CHR3R4 or aryl which is unsubstituted or carries one or more, e.g.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: May 28, 2019
    Assignee: BASF SE
    Inventors: Mathias Schelwies, Rocco Paciello, Gunnar Heydrich, Günter Wegner, Gerd-Dieter Tebben, Martin Haubner, Andreas Keller, Oliver Bey, Stephanie Renz, Georg Seeber
  • Publication number: 20180244598
    Abstract: The present invention relates to a process for the preparation of an optically active carbonyl compound by asymmetric hydrogenation of a prochiral ?,?-unsaturated carbonyl compound with hydrogen in the presence of at least one optically active transition metal catalyst that is soluble in the reaction mixture and which has rhodium as catalytically active transition metal and a chiral, bidentate bisphosphine ligand, wherein the reaction mixture during the hydrogenation of the prochiral ?,?-unsaturated carbonyl compound additionally comprises at least one compound of the general formula (I): in which R1, R2: are identical or different and are C6- to C10-aryl which is unsubstituted or carries one or more, e.g. 1, 2, 3, 4 or 5, substituents which are selected from C1- to C6-alkyl, C3- to C6-cycloalkyl, C6- to C10-aryl, C1- to C6-alkoxy and amino; Z is a group CHR3R4 or aryl which is unsubstituted or carries one or more, e.g.
    Type: Application
    Filed: April 27, 2018
    Publication date: August 30, 2018
    Inventors: Mathias SCHELWIES, Rocco PACIELLO, Gunnar HEYDRICH, Günter WEGNER, Gerd-Dieter TEBBEN, Martin HAUBNER, Andreas KELLER, Oliver BEY, Stephanie RENZ, Georg SEEBER
  • Patent number: 9988331
    Abstract: The present invention relates to a particularly economic overall method for producing menthol, specifically for producing optically active, essentially enantiomerically and diastereomerically pure L-menthol and racemic menthol, starting from the starting material citral which is available inexpensively on an industrial scale. The method has the following steps a.1) catalytic hydrogenation of neral and/or geranial to give citronellal, b.1) cyclization of citronellal to isopulegol in the presence of an acidic catalyst, c.1) purification of isopulegol by crystallization and d.1) catalytic hydrogenation of isopulegol to give menthol.
    Type: Grant
    Filed: October 23, 2012
    Date of Patent: June 5, 2018
    Assignee: BASF SE
    Inventors: Gunnar Heydrich, Gabriele Gralla, Matthias Rauls, Joachim Schmidt-Leithoff, Klaus Ebel, Wolfgang Krause, Steffen Oehlenschläger, Christoph Jäkel, Marko Friedrich, Eike Johannes Bergner, Nawid Kashani-Shirazi, Rocco Paciello
  • Patent number: 9975837
    Abstract: The present invention relates to a process for the preparation of an optically active carbonyl compound by asymmetric hydrogenation of a prochiral ?,?-unsaturated carbonyl compound with hydrogen in the presence of at least one optically active transition metal catalyst that is soluble in the reaction mixture and which has rhodium as catalytically active transition metal and a chiral, bidentate bisphosphine ligand, wherein the reaction mixture during the hydrogenation of the prochiral ?,?-unsaturated carbonyl compound additionally comprises at least one compound of the general formula (I): in which R1, R2: are identical or different and are C6- to C10-aryl which is unsubstituted or carries one or more, e.g. 1, 2, 3, 4 or 5, substituents which are selected from C1- to C6-alkyl, C3- to C6-cycloalkyl, C6- to C10-aryl, C1- to C6-alkoxy and amino; Z is a group CHR3R4 or aryl which is unsubstituted or carries one or more, e.g.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: May 22, 2018
    Assignee: BASF SE
    Inventors: Mathias Schelwies, Rocco Paciello, Gunnar Heydrich, Günter Wegner, Gerd-Dieter Tebben, Martin Haubner, Andreas Keller, Oliver Bey, Stephanie Renz, Georg Seeber
  • Publication number: 20180057437
    Abstract: The present invention relates to a process for the preparation of an optically active carbonyl compound by asymmetric hydrogenation of a prochiral ?,?-unsaturated carbonyl compound with hydrogen in the presence of at least one optically active transition metal catalyst that is soluble in the reaction mixture and which has rhodium as catalytically active transition metal and a chiral, bidentate bisphosphine ligand, wherein the reaction mixture during the hydrogenation of the prochiral ?,?-unsaturated carbonyl compound additionally comprises at least one compound of the general formula (I): in which R1, R2: are identical or different and are C6- to C10-aryl which is unsubstituted or carries one or more, e.g. 1, 2, 3, 4 or 5, substituents which are selected from C1- to C6-alkyl, C3- to C6-cycloalkyl, C6- to C10-aryl, C1- to C6-alkoxy and amino; Z is a group CHR3R4 or aryl which is unsubstituted or carries one or more, e.g.
    Type: Application
    Filed: December 18, 2015
    Publication date: March 1, 2018
    Inventors: Mathias SCHELWIES, Rocco PACIELLO, Gunnar HEYDRICH, Günter WEGNER, Gerd TEBBEN, Martin HAUBNER, Andreas KELLER, Oliver BEY, Stephanie RENZ, Georg SEEBER
  • Patent number: 8759580
    Abstract: The invention relates to a process for preparing aminoalkanamides by reacting cyanoalkanoic esters with a) ammonia or an amine and b) hydrogen in the presence of a catalyst, the reaction with component b) being started simultaneously or not later than a maximum of 100 minutes after commencement of the reaction of the cyanoalkanoic ester with component a).
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: June 24, 2014
    Assignee: BASF SE
    Inventors: Martin Ernst, Andreas Kusche, Gunnar Heydrich, Horst Grafmans, Holger Evers, Johann-Peter Melder, Harald Meiβner, Torsten Freund
  • Patent number: 8653313
    Abstract: The present invention relates to an improved process for preparing a substituted or unsubstituted phenylcyclohexane by catalytic hydrogenation of a substituted or unsubstituted biphenyl.
    Type: Grant
    Filed: November 2, 2011
    Date of Patent: February 18, 2014
    Assignee: BASF SE
    Inventors: Gabriele Gralla, Gunnar Heydrich
  • Patent number: 8623621
    Abstract: A process for preparing optically active 2-methylalkan-1-ol of the general formula (III) comprising the following steps: (i) carbonyl-selective reduction of 2-methylalk-2-en-1-al of the general formula (I) to 2-methylalk-2-en-1-ol of the general formula (II), (ii) enantioselective hydrogenation of 2-methylalk-2-en-1-ol to the general formula (iii), (iii) increasing the optical yield of the optically active 2-methylalkan-1-ol (III) obtained in step (ii) by a lipase-catalyzed acylation reaction, where the radical R means C1-C10-alkyl.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: January 7, 2014
    Assignee: BASF SE
    Inventors: Christoph Jäkel, Gunnar Heydrich, Rainer Stürmer, Rocco Paciello
  • Patent number: 8414744
    Abstract: The present invention relates to a continuous process for preparing racemic or optically active menthol in pure or enriched form by distillatively separating menthol from substance mixtures which comprise essentially menthol and diastereomers thereof. This distillatiive separation is performed in a dividing wall column with 50 to 300 theoretical plates and one or more side draw points at an absolute operating pressure of 5 to 500 mbar.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: April 9, 2013
    Assignee: BASF SE
    Inventors: Gunnar Heydrich, Gabriele Gralla, Klaus Ebel, Wolfgang Krause, Nawid Kashani-Shirazi
  • Patent number: RE46151
    Abstract: The present invention relates to a process for preparing 4,4?-[1-(trifluoromethyl)alkylidene]bis(2,6-diphenylphenols), in particular for preparing 4,4?-[1-(trifluoromethyl)ethylidene]bis(2,6-diphenylphenol), which comprises the self-condensation of cyclohexanone in the presence of a basic catalyst to form tricyclic condensation products, dehydrogenation of the resulting tricyclic condensation products in the presence of a supported transition metal catalyst in the condensed phase to form 2,6-diphenylphenol and reaction of the 2,6-diphenylphenol with a trifluoromethyl ketone. The invention further provides an improved process for preparing 2,6-diphenylphenol by aldol self-condensation of cyclohexanone.
    Type: Grant
    Filed: July 2, 2014
    Date of Patent: September 20, 2016
    Assignee: BASF SE
    Inventors: Gabriele Gralla, Gunnar Heydrich, Klaus Ebel, Wolfgang Krause
  • Patent number: RE49036
    Abstract: The present invention relates to a process for the preparation of an optically active carbonyl compound by asymmetric hydrogenation of a prochiral ?,?-unsaturated carbonyl compound with hydrogen in the presence of at least one optically active transition metal catalyst that is soluble in the reaction mixture and which has rhodium as catalytically active transition metal and a chiral, bidentate bisphosphine ligand, wherein the reaction mixture during the hydrogenation of the prochiral ?,?-unsaturated carbonyl compound additionally comprises at least one compound of the general formula (I): in which R1, R2: are identical or different and are C6- to C10-aryl which is unsubstituted or carries one or more, e.g. 1, 2, 3, 4 or 5, substituents which are selected from C1- to C6-alkyl, C3- to C6-cycloalkyl, C6- to C10-aryl, C1- to C6-alkoxy and amino; Z is a group CHR3R4 or aryl which is unsubstituted or carries one or more, e.g.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: April 19, 2022
    Assignee: BASF SE
    Inventors: Mathias Schelwies, Rocco Paciello, Gunnar Heydrich, Günter Wegner, Gerd-Dieter Tebben, Martin Haubner, Andreas Keller, Oliver Bey, Stephanie Renz, Georg Seeber