Patents by Inventor Guomin Yu

Guomin Yu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210356663
    Abstract: A device coupon for use in a hybrid integration process with a silicon platform. The device coupon comprises: an input waveguide, including an input facet; an active waveguide, coupled to the input waveguide, the active waveguide including a III-V semiconductor based electro-optical device; and an output waveguide, configured to couple light between the active waveguide and an output facet. The input waveguide and output waveguide are passive waveguides.
    Type: Application
    Filed: May 12, 2021
    Publication date: November 18, 2021
    Inventors: Guomin YU, Aaron John ZILKIE
  • Patent number: 11150494
    Abstract: A Mach-Zehnder waveguide modulator. In some embodiments, the Mach-Zehnder waveguide modulator includes a first arm including a first optical waveguide, and a second arm including a second optical waveguide. The first optical waveguide includes a junction, and the Mach-Zehnder waveguide modulator further includes a plurality of electrodes for providing a bias across the junction to enable control of the phase of light travelling through the junction.
    Type: Grant
    Filed: August 23, 2019
    Date of Patent: October 19, 2021
    Assignee: Rockley Photonics Limited
    Inventors: Guomin Yu, Hooman Abediasl, Aaron L. Birkbeck, Jeffrey Driscoll, Haydn Frederick Jones, Damiana Lerose, Amit Singh Nagra, David Arlo Nelson, Dong Yoon Oh, Pradeep Srinivasan, Aaron John Zilkie
  • Publication number: 20210311333
    Abstract: A photonic chip. In some embodiments, the photonic chip includes a waveguide; and an optically active device comprising a portion of the waveguide. The waveguide may have a first end at a first edge of the photonic chip; and a second end, and the waveguide may have, everywhere between the first end and the second end, a rate of change of curvature having a magnitude not exceeding 2,000/mm2.
    Type: Application
    Filed: June 16, 2021
    Publication date: October 7, 2021
    Inventors: Abu THOMAS, Albert BENZONI, Jacob LEVY, Thomas Pierre SCHRANS, Andrea TRITA, Guomin YU, Aaron John ZILKIE
  • Publication number: 20210311256
    Abstract: A method of fabricating a device coupon including a waveguide which is suitable for use in a micro-transfer printing process. The method comprises the steps, on a wafer, of: depositing a lower cladding layer on an uppermost surface of the wafer; providing a silicon nitride guiding layer on an uppermost surface of the lower cladding; depositing an upper cladding over at least an uppermost surface of the silicon nitride guiding layer; providing a tether over the coupon, and etching away a region of the uppermost layer of the wafer located between the lower cladding layer and a substrate of the wafer, thereby leaving the lower cladding layer, silicon nitride guiding layer, and upper cladding layer suspended above the wafer via the tether.
    Type: Application
    Filed: March 16, 2021
    Publication date: October 7, 2021
    Inventors: Guomin Yu, Aaron John Zilkie
  • Patent number: 11126020
    Abstract: A silicon based electro-optically active device and method of producing the same. The silicon based electro-optically active device comprising: a silicon-on-insulator (SOI) waveguide; an electro-optically active waveguide including an electro-optically active stack within a cavity of the SOI waveguide; and a lined channel between the electro-optically active stack and the SOI waveguide, the lined channel comprising a liner; wherein the lined channel is filled with a filling material with a refractive index similar to that of a material forming a sidewall of the cavity, to thereby form a bridge-waveguide in the channel between the SOI waveguide and the electro-optically active stack.
    Type: Grant
    Filed: May 11, 2018
    Date of Patent: September 21, 2021
    Assignee: Rockley Photonics Limited
    Inventors: Guomin Yu, Yi Zhang, Aaron John Zilkie
  • Publication number: 20210271119
    Abstract: An electro-optically active device comprising: a silicon on insulator (SOI) substrate including a silicon base layer, a buried oxide (BOX) layer on top of the silicon base layer, a silicon on insulator (SOI) layer on top of the BOX layer, and a substrate cavity which extends through the SOI layer, the BOX layer and into the silicon base layer, such that a base of the substrate cavity is formed by a portion of the silicon base layer; an electro-optically active waveguide including an electro-optically active stack within the substrate cavity; and a buffer region within the substrate cavity beneath the electro-optically active waveguide, the buffer region comprising a layer of Ge and a layer of GaAs.
    Type: Application
    Filed: May 14, 2019
    Publication date: September 2, 2021
    Applicant: Rockley Photonics Limited
    Inventors: Guomin YU, Aaron John ZILKIE
  • Patent number: 11105975
    Abstract: A waveguide optoelectronic device comprising a rib waveguide region, and method of manufacturing a rib waveguide region, the rib waveguide region having: a base of a first material, and a ridge extending from the base, at least a portion of the ridge being formed from a chosen semiconductor material which is different from the material of the base wherein the silicon base includes a first slab region at a first side of the ridge and a second slab region at a second side of the ridge; and wherein: a first doped region extends along: the first slab region and along a first sidewall of the ridge, the first sidewall contacting the first slab region; and a second doped region extends along: the second slab region and along a second sidewall of the ridge, the second sidewall contacting the second slab region.
    Type: Grant
    Filed: December 1, 2017
    Date of Patent: August 31, 2021
    Assignee: Rockley Photonics Limited
    Inventors: Hooman Abediasl, Damiana LeRose, Amit Singh Nagra, Guomin Yu
  • Patent number: 11099454
    Abstract: A method of operating an optical modulator. The optical modulator having: a rib waveguide which includes a junction which is either a PIN or PN junction, the junction having a breakdown voltage. The method comprising: applying a reverse bias to the junction, so as to operate the optical modulator around the breakdown voltage of the junction; operating the modulator in an avalanche multiplication and/or band-to-band tunnelling mode by increasing the reverse bias past the breakdown voltage.
    Type: Grant
    Filed: March 22, 2018
    Date of Patent: August 24, 2021
    Assignees: Rockley Photonics Limited, University of Southampton
    Inventors: Guomin Yu, Aaron John Zilkie, Yi Zhang, David John Thomson
  • Patent number: 11101256
    Abstract: An optoelectronic device. The optoelectronic device operable to provide a PAM-N modulated output, the device comprising: M optical modulators, M being an integer greater than 1, the M optical modulators being arranged in a cascade, the device being configured to operate in N distinct transmittance states, as a PAM-N modulator, wherein, in each transmittance state of the N distinct transmittance states, each of the M optical modulators has applied to it a respective control voltage equal to one of: a first voltage or a second voltage. One or more of the modulators may include a substrate; a crystalline cladding layer, on top of the substrate; and an optically active region, above the crystalline cladding layer. The crystalline cladding layer may have a refractive index which is less than a refractive index of the optically active region.
    Type: Grant
    Filed: November 19, 2018
    Date of Patent: August 24, 2021
    Assignee: Rockley Photonics Limited
    Inventors: Guomin Yu, Amit Singh Nagra, Damiana Lerose, Hooman Abediasl, Pradeep Srinivasan, Joyce Kai See Poon, Zheng Yong, Haydn Frederick Jones
  • Patent number: 11092825
    Abstract: An optoelectronic device and a method of manufacturing the same. The device comprising: a multi-layered optically active stack; an input waveguide, arranged to guide light into the stack; an output waveguide, arranged to guide light out of the stack; and anti-reflective coatings, located between both the input waveguide and the stack and the stack and the output waveguide; wherein the input waveguide and output waveguide are formed of silicon nitride.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: August 17, 2021
    Assignee: Rockley Photonics Limited
    Inventors: Guomin Yu, Aaron Zilkie
  • Patent number: 11075498
    Abstract: A method of fabricating an optoelectronic component within a silicon-on-insulator substrate, the method comprising: providing a silicon-on-insulator (SOI) substrate, the SOI substrate comprising a silicon base layer, a buried oxide (BOX) layer on top of the base layer, and a silicon device layer on top of the BOX layer; etching a first cavity region into the SOI substrate and etching a second cavity region into the SOI substrate, the first cavity region having a first depth and the second cavity region having a second depth, the second depth being greater than the first depth; depositing a multistack epi layer into the first and the second cavity regions simultaneously, the multistack epi layer comprising a first multistack portion comprising a first active region and a second multistack portion comprising a second active region.
    Type: Grant
    Filed: August 21, 2020
    Date of Patent: July 27, 2021
    Assignee: Rockley Photonics Limited
    Inventor: Guomin Yu
  • Publication number: 20210181546
    Abstract: An optoelectronic device. The optoelectronic device comprising: a silicon-on-insulator platform, including: a silicon waveguide located within a silicon device layer of the platform, a substrate, and an insulator layer between the substrate and the silicon device layer; and a III-V semiconductor based device, located within a cavity of the silicon-on-insulator platform and including a III-V semiconductor based waveguide, coupled to the silicon waveguide; wherein the III-V semiconductor based device includes a heater and one or more electrical traces, connected to the heater, wherein the one or more electrical traces extend from the III-V semiconductor based device to respective contact pads on the silicon-on-insulator platform.
    Type: Application
    Filed: November 25, 2020
    Publication date: June 17, 2021
    Inventors: Guomin Yu, Aaron John Zilkie, Frank Peters
  • Publication number: 20210181437
    Abstract: A method of transfer printing. The method comprising: providing a precursor photonic device, comprising a substrate and a bonding region, wherein the precursor photonic device includes one or more alignment marks located in or adjacent to the bonding region; providing a transfer die, said transfer die including one or more alignment marks; aligning the one or more alignment marks of the precursor photonic device with the one or more alignment marks of the transfer die; and bonding at least a part of the transfer die to the bonding region.
    Type: Application
    Filed: February 3, 2021
    Publication date: June 17, 2021
    Inventors: Guomin Yu, Mohamad Dernaika, Ludovic Caro, Hua Yang, Aaron John Zilkie
  • Patent number: 11036005
    Abstract: A method of transfer printing. The method comprising: providing a precursor photonic device, comprising a substrate and a bonding region, wherein the precursor photonic device includes one or more alignment marks located in or adjacent to the bonding region; providing a transfer die, said transfer die including one or more alignment marks; aligning the one or more alignment marks of the precursor photonic device with the one or more alignment marks of the transfer die; and bonding at least a part of the transfer die to the bonding region.
    Type: Grant
    Filed: August 5, 2019
    Date of Patent: June 15, 2021
    Assignee: Rockley Photonics Limited
    Inventors: Guomin Yu, Aaron John Zilkie
  • Publication number: 20210175384
    Abstract: A germanium based avalanche photo-diode device and method of manufacture thereof. The device including: a silicon substrate; a lower doped silicon region, positioned above the substrate; a silicon multiplication region, positioned above the lower doped silicon region; an intermediate doped silicon region, positioned above the silicon multiplication region; an un-doped germanium absorption region, position above the intermediate doped silicon region; an upper doped germanium region, positioned above the un-doped germanium absorption region; and an input silicon waveguide; wherein: the un-doped germanium absorption region and the upper doped germanium region form a germanium waveguide which is coupled to the input waveguide, and the device also includes a first electrode and a second electrode, and the first electrode extends laterally to contact the lower doped silicon region and the second electrode extends laterally to contact the upper doped germanium region.
    Type: Application
    Filed: May 15, 2018
    Publication date: June 10, 2021
    Inventor: Guomin YU
  • Patent number: 11022824
    Abstract: A silicon based electro-optically active device and method of production thereof. The device comprising: a silicon-on-insulator (SOI) layer; an electro-optically active stack, disposed on top of the SOI layer: a first epitaxially grown structure comprising a first passive waveguide and a second epitaxially grown structure comprising a second passive waveguide, the first and second passive waveguides being disposed adjacent to respective sides of the electro-optically active stack, wherein the first and second passive waveguides are configured to edge couple light from the first passive waveguide into the electro-optically active stack and from the electro-optically active stack into the second passive waveguide; and an evanescent coupling structure, for evanescently coupling light between the SOI layer and the first and second passive waveguides.
    Type: Grant
    Filed: November 23, 2017
    Date of Patent: June 1, 2021
    Assignee: Rockley Photonics Limited
    Inventors: Guomin Yu, Aaron Zilkie
  • Publication number: 20210111301
    Abstract: A method of manufacturing an electro-optically active device. The method comprising the steps of: etching a cavity on a silicon-on-insulator wafer; providing a sacrificial layer adjacent to a substrate of a lll-V semiconductor wafer; epitaxially growing an electro-optically active structure on the lll-V semiconductor wafer; etching the epitaxially grown optically active structure into an electro-optically active mesa; disposing the electro-optically active mesa in the cavity of the silicon-on-insulator wafer and bonding a surface of the electro-optically active mesa, which is distal to the sacrificial layer, to a bed of the cavity; and removing the sacrificial layer between the substrate of the lll-V semiconductor wafer and the electro-optically active mesa.
    Type: Application
    Filed: May 15, 2019
    Publication date: April 15, 2021
    Inventor: Guomin YU
  • Patent number: 10955692
    Abstract: An optoelectronic component including a waveguide, the waveguide comprising an optically active region (OAR), the OAR having an upper and a lower surface; a lower doped region, wherein the lower doped region is located at and/or adjacent to at least a portion of a lower surface of the OAR, and extends laterally outwards from the OAR in a first direction; an upper doped region, wherein the upper doped region is located at and/or adjacent to at least a portion of an upper surface of the OAR, and extends laterally outwards from the OAR in a second direction; and an intrinsic region located between the lower doped region and the upper doped region.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: March 23, 2021
    Assignee: Rockley Photonics Limited
    Inventors: Guomin Yu, Hooman Abediasl, Damiana Lerose, Kevin Masuda, Andrea Trita, Aaron Zilkie
  • Publication number: 20210066537
    Abstract: A method of manufacturing a III-V based optoelectronic device on a silicon-on-insulator wafer. The silicon-on-insulator wafer comprises a silicon device layer, a substrate, and an insulator layer between the substrate and silicon device layer. The method includes the steps of: providing a device coupon, the device coupon being formed of a plurality of III-V based layers; providing the silicon-on-insulator wafer, the wafer including a cavity with a bonding region; transfer printing the device coupon into the cavity, and bonding a layer of the device coupon to the bonding region, such that a channel is left around one or more lateral sides of the device coupon; filling the channel with a bridge-waveguide material; and performing one or more etching steps on the device coupon, silicon-on-insulator wafer, and/or channel.
    Type: Application
    Filed: August 25, 2020
    Publication date: March 4, 2021
    Inventor: Guomin Yu
  • Publication number: 20210057874
    Abstract: A method of fabricating an optoelectronic component within a silicon-on-insulator substrate, the method comprising: providing a silicon-on-insulator (SOI) substrate, the SOI substrate comprising a silicon base layer, a buried oxide (BOX) layer on top of the base layer, and a silicon device layer on top of the BOX layer; etching a first cavity region into the SOI substrate and etching a second cavity region into the SOI substrate, the first cavity region having a first depth and the second cavity region having a second depth, the second depth being greater than the first depth; depositing a multistack epi layer into the first and the second cavity regions simultaneously, the multistack epi layer comprising a first multistack portion comprising a first active region and a second multistack portion comprising a second active region.
    Type: Application
    Filed: August 21, 2020
    Publication date: February 25, 2021
    Inventor: Guomin YU