Patents by Inventor Guoyou Feng

Guoyou Feng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9634558
    Abstract: The present invention discloses a negative charge pump feedback circuit, wherein the feedback circuit is connected between an AND gate and the output terminal of the negative charge pump, and a clock signal is connected to the negative charge pump through the AND gate and under the control of the feedback signal, with the feedback circuit including a switch-capacitor circuit and a comparator; a first terminal of a first capacitor of the switch-capacitor circuit is connected to the output terminal of the negative charge pump through a first switch, and grounded through a second switch; a first terminal of a second capacitor is connected to a second terminal of the first capacitor, grounded though a third switch, and connected to the comparator though a fourth switch; an adjustable capacitor is connected in parallel to both terminals of the second capacitor; a positive-phase input terminal of the comparator is connected to a reference voltage.
    Type: Grant
    Filed: December 21, 2014
    Date of Patent: April 25, 2017
    Assignee: SHANGHAI HUAHONG GRACE SEMICONDUCTOR MANUFACTURING CORPORATION
    Inventor: Guoyou Feng
  • Patent number: 9530505
    Abstract: An EEPROM memory cell gate control signal generating circuit, which includes a high-voltage row decoding circuit and a plurality of word selection circuits; the output of the high-voltage row decoding circuit is divided into two routes, which output a first total wordline voltage used for providing the erasing positive voltage and a second total wordline voltage used for providing the erasing negative voltage, respectively; besides, the two-route voltages are inputted into the individual word selection circuits respectively, which avoids the influence of the erasing positive voltage on the grid oxide layer of an NMOS transistor and the influence of the erasing negative voltage on a PMOS transistor, and can save the MOS transistor used for isolating the grid oxide layer.
    Type: Grant
    Filed: December 21, 2015
    Date of Patent: December 27, 2016
    Assignee: Shanghai Huahong Grace Semiconductor Manufacturing Corporation
    Inventors: Guoyou Feng, Yanli Zhao
  • Publication number: 20160365148
    Abstract: An EEPROM memory cell gate control signal generating circuit, which includes a high-voltage row decoding circuit and a plurality of word selection circuits; the output of the high-voltage row decoding circuit is divided into two routes, which output a first total wordline voltage used for providing the erasing positive voltage and a second total wordline voltage used for providing the erasing negative voltage, respectively; besides, the two-route voltages are inputted into the individual word selection circuits respectively, which avoids the influence of the erasing positive voltage on the grid oxide layer of an NMOS transistor and the influence of the erasing negative voltage on a PMOS transistor, and can save the MOS transistor used for isolating the grid oxide layer.
    Type: Application
    Filed: December 21, 2015
    Publication date: December 15, 2016
    Applicant: SHANGHAI HUAHONG GRACE SEMICONDUCTOR MANUFACTURING CORPORATION
    Inventors: Guoyou Feng, Yanli Zhao
  • Publication number: 20160181913
    Abstract: The present invention discloses a negative charge pump feedback circuit, wherein the feedback circuit is connected between an AND gate and the output terminal of the negative charge pump, and a clock signal is connected to the negative charge pump through the AND gate and under the control of the feedback signal, with the feedback circuit including a switch-capacitor circuit and a comparator; a first terminal of a first capacitor of the switch-capacitor circuit is connected to the output terminal of the negative charge pump through a first switch, and grounded through a second switch; a first terminal of a second capacitor is connected to a second terminal of the first capacitor, grounded though a third switch, and connected to the comparator though a fourth switch; an adjustable capacitor is connected in parallel to both terminals of the second capacitor; a positive-phase input terminal of the comparator is connected to a reference voltage.
    Type: Application
    Filed: December 21, 2014
    Publication date: June 23, 2016
    Inventor: Guoyou Feng
  • Patent number: 8441887
    Abstract: A decoding circuit withstanding high voltage via a low-voltage MOS transistor, where negative high voltage that can be withstood can be as high as double what the transistor itself can withstand via two-stage CMOS inverters connected serially. When the negative high voltage is withstood, the source of a PMOS transistor in the CMOS inverter is switched to high resistance, and the substrate to the ground; the source of an NMOS transistor in the first CMOS inverter is connected with a half negative high voltage, and the source of an NMOS transistor in the second CMOS inverter with a negative high voltage; the first CMOS inverter, whose output is the half negative high voltage, is grounded at its input terminal, and output of the second CMOS inverter is the negative high voltage.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: May 14, 2013
    Assignee: Shanghai Hua Hong Nec Electronics Company, Ltd.
    Inventors: Nan Wang, Guoyou Feng
  • Publication number: 20120092041
    Abstract: A decoding circuit withstanding high voltage via a low-voltage MOS transistor, where negative high voltage that can be withstood can be as high as double what the transistor itself can withstand via two-stage CMOS inverters connected serially. When the negative high voltage is withstood, the source of a PMOS transistor in the CMOS inverter is switched to high resistance, and the substrate to the ground; the source of an NMOS transistor in the first CMOS inverter is connected with a half negative high voltage, and the source of an NMOS transistor in the second CMOS inverter with a negative high voltage; the first CMOS inverter, whose output is the half negative high voltage, is grounded at its input terminal, and output of the second CMOS inverter is the negative high voltage.
    Type: Application
    Filed: December 28, 2011
    Publication date: April 19, 2012
    Inventors: Nan WANG, Guoyou Feng
  • Patent number: 8154945
    Abstract: The present invention discloses a decoding circuit withstanding high voltage via a low-voltage MOS transistor, where negative high voltage that can be withstood can be as high as double what the transistor itself can withstand via two-stage CMOS inverters connected serially. When the negative high voltage is withstood, the source of a PMOS transistor in the CMOS inverter is switched to high resistance, and the substrate to the ground; the source of an NMOS transistor in the first CMOS inverter is connected with a half negative high voltage, and the source of an NMOS transistor in the second CMOS inverter with a negative high voltage; the first CMOS inverter, whose output is the half negative high voltage, is grounded at its input terminal, and output of the second CMOS inverter is the negative high voltage. The present invention further discloses a method of implementing the decoding circuit and a memory circuit using the decoding circuit.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: April 10, 2012
    Assignee: Shanghai Hua Hong NEC Electronics Company, Ltd.
    Inventors: Nan Wang, Guoyou Feng
  • Publication number: 20100014376
    Abstract: The present invention discloses a decoding circuit withstanding high voltage via a low-voltage MOS transistor, where negative high voltage that can be withstood can be as high as double what the transistor itself can withstand via two-stage CMOS inverters connected serially. When the negative high voltage is withstood, the source of a PMOS transistor in the CMOS inverter is switched to high resistance, and the substrate to the ground; the source of an NMOS transistor in the first CMOS inverter is connected with a half negative high voltage, and the source of an NMOS transistor in the second CMOS inverter with a negative high voltage; the first CMOS inverter, whose output is the half negative high voltage, is grounded at its input terminal, and output of the second CMOS inverter is the negative high voltage. The present invention further discloses a method of implementing the decoding circuit and a memory circuit using the decoding circuit.
    Type: Application
    Filed: July 20, 2009
    Publication date: January 21, 2010
    Inventors: Nan WANG, Guoyou Feng