Patents by Inventor Guozhong Gao

Guozhong Gao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11959879
    Abstract: Disclosed is a method and device for determining characteristics of metallic casing and casing attenuation, the method includes the following steps: obtaining the ratio of first magnetic field with metallic casing and without metallic casing at DC mode; obtaining magnetic related parameter of the metallic casing; obtaining magnetic permeability of metallic casing; obtaining the ratio of second magnetic field with metallic casing and without metallic casing at AC mode; obtaining electrical related parameter of the metal casing through the ratio of the second magnetic field and the magnetic related parameter of the metal casing; obtaining electrical conductivity of metallic casing through the electrical related parameter; obtaining casing attenuation of metallic casing through the magnetic related parameter and the electrical related parameter. The beneficial effect of this disclosure is: this method can obtain characteristics and casing attenuation of metallic casing without measuring impedance.
    Type: Grant
    Filed: April 8, 2022
    Date of Patent: April 16, 2024
    Assignee: Southwest Petroleum University
    Inventor: Guozhong Gao
  • Publication number: 20230228711
    Abstract: Disclosed is a method and device for determining characteristics of metallic casing and casing attenuation, the method includes the following steps: obtaining the ratio of first magnetic field with metallic casing and without metallic casing at DC mode; obtaining magnetic related parameter of the metallic casing; obtaining magnetic permeability of metallic casing; obtaining the ratio of second magnetic field with metallic casing and without metallic casing at AC mode; obtaining electrical related parameter of the metal casing through the ratio of the second magnetic field and the magnetic related parameter of the metal casing; obtaining electrical conductivity of metallic casing through the electrical related parameter; obtaining casing attenuation of metallic casing through the magnetic related parameter and the electrical related parameter. The beneficial effect of this disclosure is: this method can obtain characteristics and casing attenuation of metallic casing without measuring impedance.
    Type: Application
    Filed: April 8, 2022
    Publication date: July 20, 2023
    Inventor: Guozhong Gao
  • Patent number: 10082019
    Abstract: A method for signal communication between a well drilling instrument and the Earths surface includes generating an electromagnetic field in an instrument disposed in drill string used to drill a wellbore. The electromagnetic field includes encoded measurements from at least one sensor associated with the instrument. A signal corresponding to an amplitude and/or phase of the electromagnetic field is measured between the drill string and a surface electrode when the drill string is substantially electrically isolated from a well casing. A signal corresponding to the amplitude and/or phase is measured between the casing and a surface electrode when the casing and the drill string are in electrical contact with each other.
    Type: Grant
    Filed: December 17, 2015
    Date of Patent: September 25, 2018
    Inventors: Guozhong Gao, Luis Eduardo DePavia, Gaelle Jannin
  • Publication number: 20170362932
    Abstract: A method for signal communication between a well drilling instrument and the Earths surface includes generating an electromagnetic field in an instrument disposed in drill string used to drill a wellbore. The electromagnetic field includes encoded measurements from at least one sensor associated with the instrument. A signal corresponding to an amplitude and/or phase of the electromagnetic field is measured between the drill string and a surface electrode when the drill string is substantially electrically isolated from a well casing. A signal corresponding to the amplitude and/or phase is measured between the casing and a surface electrode when the casing and the drill string are in electrical contact with each other.
    Type: Application
    Filed: December 17, 2015
    Publication date: December 21, 2017
    Inventors: Guozhong Gao, Luis Eduardo DePavia, Gaelle Jannin
  • Patent number: 9638028
    Abstract: A method for signal communication between a well drilling instrument and the Earth's surface includes generating an electromagnetic field in an instrument disposed in drill string used to drill a wellbore. The electromagnetic field includes encoded measurements from at least one sensor associated with the instrument. A signal corresponding to an amplitude of the electromagnetic field is measured and the measurements from the measured signal are decoded. The signal comprises a voltage measured across electrodes or a voltage induced in an electromagnetic receiver disposed at a selected depth below the Earth's surface. The selected depth is at least the depth of a formation below the water table having a highest resistivity within 500 meters of the surface.
    Type: Grant
    Filed: August 27, 2014
    Date of Patent: May 2, 2017
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Guozhong Gao, Luis E. Depavia
  • Publication number: 20160061027
    Abstract: A method for signal communication between a well drilling instrument and the Earth's surface includes generating an electromagnetic field in an instrument disposed in drill string used to drill a wellbore. The electromagnetic field includes encoded measurements from at least one sensor associated with the instrument. A signal corresponding to an amplitude of the electromagnetic field is measured and the measurements from the measured signal are decoded. The signal comprises a voltage measured across electrodes or a voltage induced in an electromagnetic receiver disposed at a selected depth below the Earth's surface. The selected depth is at least the depth of a formation below the water table having a highest resistivity within 500 meters of the surface.
    Type: Application
    Filed: August 27, 2014
    Publication date: March 3, 2016
    Inventors: Guozhong Gao, Luis E. Depavia
  • Patent number: 9103927
    Abstract: To perform marine electromagnetic (EM) surveying of a subterranean structure, a marine cable system is provided including a tow cable, a plurality of electromagnetic (EM) sources coupled to the tow cable, and a plurality of EM receivers coupled to the tow cable. The system is configured for deployment in a body of water to perform marine EM surveying of a subterranean structure.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: August 11, 2015
    Assignee: WESTERNGECO L.L.C.
    Inventors: David L. Alumbaugh, Guozhong Gao, Tarek M. Habashy, H. Frank Morrison, Michael Oristaglio, Kambiz A. Safinya, Andrea Zerilli
  • Patent number: 8886463
    Abstract: To characterize an earth subterranean structure using a measurement assembly including electromagnetic (EM) receivers and one or more EM sources, measured voltage data collected by EM receivers in response to transmission by one or more EM sources is received. Based on a model, predicted EM data is computed. Inversion is iteratively performed according to a function that computes a difference between the measured voltage data and a product of a term containing the predicted EM data and a term containing distortion data that accounts at least for distortion effect by an environment of the measurement assembly. The inversion is iteratively performed to solve for parameters of the model and the distortion data.
    Type: Grant
    Filed: June 1, 2010
    Date of Patent: November 11, 2014
    Assignee: Schlumberger Technology Corporation
    Inventors: Aria Abubakar, Tarek Habashy, David Alumbaugh, Ping Zhang, Guozhong Gao, Jianguo Liu
  • Patent number: 8614578
    Abstract: The present disclosure relates to determining the attenuation of an electromagnetic signal passing through a conductive material. An antenna is provided and placed in relatively close proximity to the conductive material. An alternating current is passed through the antenna and the impedance of the antenna is measured. The attenuation is determined using the measured impedance. A single frequency measurement may be made, or multiple measurements using different frequencies may be made. Grouped parameters based on properties of the material and the frequency of the current are used to relate the coil impedance to the attenuation. A current frequency for which the ratio of the antenna's resistive part of the impedance to the angular frequency of the current is substantially insensitive to at least one of the parameters is preferred.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: December 24, 2013
    Assignee: Schlumberger Technology Corporation
    Inventors: Guozhong Gao, H. Frank Morrison, Hong Zhang, Richard A. Rosthal, David Alumbaugh, Cyrille Levesque
  • Patent number: 8400159
    Abstract: Methods and related systems are described for determining the casing attenuation factor for various frequencies from measurements of the impedance of the transmitting or receiving coil of wire of. The compensation is based on two relationships. The first relationship is between one or more measured impedance parameters and the product of casing conductivity, casing thickness and electromagnetic frequency. The second relationship is between the casing correction factor and the product of casing conductivity, casing thickness and electromagnetic frequency.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: March 19, 2013
    Assignee: Schlumberger Technology Corporation
    Inventors: Guozhong Gao, Frank Morrison
  • Patent number: 8392119
    Abstract: Methods and related systems are described for analyzing electromagnetic survey data. Electromagnetic survey data of a subterranean formation is obtained using at least a downhole transceiver deployed in a borehole and a transceiver positioned on the surface, or in the same or another borehole. Limits are defined for casing correction coefficients that account for effects of the borehole casing. A constrained inversion process is performed solving for the casing correction coefficients within the defined limits, and for one or more parameters of a model representing attributes, such as resistivity, of the subterranean formation.
    Type: Grant
    Filed: April 28, 2010
    Date of Patent: March 5, 2013
    Assignee: Schlumberger Technology Corporation
    Inventors: David L. Alumbaugh, Cyrille Levesque, Ping Zhang, Guozhong Gao
  • Patent number: 8332191
    Abstract: The present disclosure relates to determining attenuation factors relating to an electromagnetic signal passing through, a conductive material seen by a real sensor. A sensor is provided and disposed proximate to the material. An alternating current is passed through the sensor and the impedance of the sensor is measured. The impedance of an ideal coil is obtained from the measured impedance using electromagnetic modeling combined with a circuit analysis of the coil impedance, and the attenuation factors for the real coil in straight or feedback mode are determined by electromagnetic modeling of casing attenuation factors and impedance of an ideal coil combined with equivalent circuit modeling of the sensor transfer functions. The attenuation factors seen by the real sensor may be determined in real-time or post-survey. The material may be magnetic or non-magnetic.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: December 11, 2012
    Assignee: Schlumberger Technology Corporation
    Inventors: Richard A. Rosthal, Hong Zhang, Cyrille Levesque, Guozhong Gao, H. Frank Morrison, David Alumbaugh
  • Patent number: 8249812
    Abstract: To characterize an earth subterranean structure using a measurement assembly including electromagnetic (EM) receivers and one or more EM sources, measured voltage data collected by EM receivers in response to transmission by one or more EM sources is received. Based on a model, predicted EM data is computed. Inversion is iteratively performed according to a function that computes a difference between the measured voltage data and a product of a term containing the predicted EM data and a term containing distortion data that accounts at least for distortion effect by an environment of the measurement assembly. The inversion is iteratively performed to solve for parameters of the model and the distortion data.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: August 21, 2012
    Assignee: Schlumberger Technology Corporation
    Inventors: Aria Abubakar, Tarek Habashy, David Alumbaugh, Ping Zhang, Guozhong Gao, Jianguo Liu
  • Publication number: 20120116679
    Abstract: To perform marine electromagnetic (EM) surveying of a subterranean structure, a marine cable system is provided including a tow cable, a plurality of electromagnetic (EM) sources coupled to the tow cable, and a plurality of EM receivers coupled to the tow cable. The system is configured for deployment in a body of water to perform marine EM surveying of a subterranean structure.
    Type: Application
    Filed: January 4, 2012
    Publication date: May 10, 2012
    Inventors: DAVID L. ALUMBAUGH, GUOZHONG GAO, TAREK M. HABASHY, Frank H. MORRISON, MICHAEL ORISTAGLIO, KAMBIZ SAFINYA, ANDREA ZERILLI
  • Patent number: 8115491
    Abstract: To perform marine electromagnetic (EM) surveying of a subterranean structure, a marine cable system is provided including a tow cable, a plurality of electromagnetic (EM) sources coupled to the tow cable, and a plurality of EM receivers coupled to the tow cable. The system is configured for deployment in a body of water to perform marine EM surveying of a subterranean structure.
    Type: Grant
    Filed: January 7, 2009
    Date of Patent: February 14, 2012
    Assignee: WesternGreco L.L.C.
    Inventors: David L. Alumbaugh, Guozhong Gao, Tarek M. Habashy, Frank H. Morrison, Michael Oristaglio, Kambiz Safinya, Andrea Zerilli
  • Publication number: 20110012620
    Abstract: The present disclosure relates to determining attenuation factors relating to an electromagnetic signal passing through, a conductive material seen by a real sensor. A sensor is provided and disposed proximate to the material. An alternating current is passed through the sensor and the impedance of the sensor is measured. The impedance of an ideal coil is obtained from the measured impedance using electromagnetic modeling combined with a circuit analysis of the coil impedance, and the attenuation factors for the real coil in straight or feedback mode are determined by electromagnetic modeling of casing attenuation factors and impedance of an ideal coil combined with equivalent circuit modeling of the sensor transfer functions. The attenuation factors seen by the real sensor may be determined in real-time or post-survey. The material may be magnetic or non-magnetic.
    Type: Application
    Filed: December 18, 2009
    Publication date: January 20, 2011
    Inventors: Richard A. Rosthal, Hong Zhang, Cyrille Levesque, Guozhong Gao, H. Frank Morrison, David Alumbaugh
  • Publication number: 20100321023
    Abstract: The present disclosure relates to determining the attenuation of an electromagnetic signal passing through a conductive material. An antenna is provided and placed in relatively close proximity to the conductive material. An alternating current is passed through the antenna and the impedance of the antenna is measured. The attenuation is determined using the measured impedance. A single frequency measurement may be made, or multiple measurements using different frequencies may be made. Grouped parameters based on properties of the material and the frequency of the current are used to relate the coil impedance to the attenuation. A current frequency for which the ratio of the antenna's resistive part of the impedance to the angular frequency of the current is substantially insensitive to at least one of the parameters is preferred.
    Type: Application
    Filed: December 18, 2009
    Publication date: December 23, 2010
    Inventors: Guozhong Gao, H. Frank Morrison, Hong Zhang, Richard A. Rosthal, David Alumbaugh, Cyrille Levesque
  • Publication number: 20100305863
    Abstract: To characterize an earth subterranean structure using a measurement assembly including electromagnetic (EM) receivers and one or more EM sources, measured voltage data collected by EM receivers in response to transmission by one or more EM sources is received. Based on a model, predicted EM data is computed. Inversion is iteratively performed according to a function that computes a difference between the measured voltage data and a product of a term containing the predicted EM data and a term containing distortion data that accounts at least for distortion effect by an environment of the measurement assembly. The inversion is iteratively performed to solve for parameters of the model and the distortion data.
    Type: Application
    Filed: June 1, 2010
    Publication date: December 2, 2010
    Inventors: Aria Abubakar, Tarek Habashy, David Alumbaugh, Ping Zhang, Guozhong Gao, Jianguo Liu
  • Publication number: 20100277177
    Abstract: Methods and related systems are described for analyzing electromagnetic survey data. Electromagnetic survey data of a subterranean formation is obtained using at least a downhole transceiver deployed in a borehole and a transceiver positioned on the surface, or in the same or another borehole. Limits are defined for casing correction coefficients that account for effects of the borehole casing. A constrained inversion process is performed solving for the casing correction coefficients within the defined limits, and for one or more parameters of a model representing attributes, such as resistivity, of the subterranean formation.
    Type: Application
    Filed: April 28, 2010
    Publication date: November 4, 2010
    Inventors: David L. Alumbaugh, Cyrille Levesque, Ping Zhang, Guozhong Gao
  • Patent number: 7756642
    Abstract: To characterize an earth subterranean structure using a measurement assembly including electromagnetic (EM) receivers and one or more EM sources, measured voltage data collected by EM receivers in response to transmission by one or more EM sources is received. Based on a model, predicted EM data is computed. Inversion is iteratively performed according to a function that computes a difference between the measured voltage data and a product of a term containing the predicted EM data and a term containing distortion data that accounts at least for distortion effect by an environment of the measurement assembly. The inversion is iteratively performed to solve for parameters of the model and the distortion data.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: July 13, 2010
    Assignee: Schlumberger Technology Corporation
    Inventors: Aria Abubakar, Tarek Habashy, David Alumbaugh, Ping Zhang, Guozhong Gao, Jianguo Liu