Patents by Inventor Gurtej Sandhu

Gurtej Sandhu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8772166
    Abstract: Methods are disclosed, including for increasing the density of isolated features in an integrated circuit. Also disclosed are associated structures. In some embodiments, contacts are formed on pitch with other structures, such as conductive interconnects that may be formed by pitch multiplication. To form the contacts, in some embodiments, a pattern corresponding to some of the contacts is formed in a selectively definable material such as photoresist. Features in the selectively definable material are trimmed, and spacer material is blanket deposited over the features and the deposited material is then etched to leave spacers on sides of the features. The selectively definable material is removed, leaving a mask defined by the spacer material. The pattern defined by the spacer material may be transferred to a substrate, to form on pitch contacts. In some embodiments, the on pitch contacts may be used to electrically contact conductive interconnects in the substrate.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: July 8, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej Sandhu, Mark Kiehlbauch, Steve Kramer, John Smythe
  • Publication number: 20140185983
    Abstract: A structure for optically aligning an optical fiber to a photonic device and method of fabrication of same. The structure optically aligns an optical fiber to the photonic device using a lens between the two which is moveable by actuator heads. The lens is moveable by respective motive sources associated with the actuator heads.
    Type: Application
    Filed: January 2, 2013
    Publication date: July 3, 2014
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Gurtej Sandhu, Roy Meade, Lei Bi, John Smythe
  • Patent number: 8767454
    Abstract: A magnetic cell structure including a nonmagnetic filament contact, and methods of fabricating the structure are provided. The magnetic cell structure includes a free layer, a pinned layer, an insulative layer between the free and pinned layers, and a nonmagnetic filament contact in the insulative layer which electrically connects the free and pinned layers. The nonmagnetic filament contact is formed from a nonmagnetic source layer, also between the free and pinned layers. The filament contact directs a programming current through the magnetic cell structure such that the cross sectional area of the programming current in the free layer is less than the cross section of the structure. The decrease in the cross sectional area of the programming current in the free layer enables a lower programming current to reach a critical switching current density in the free layer and switch the magnetization of the free layer, programming the magnetic cell.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: July 1, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Jun Liu, Gurtej Sandhu
  • Publication number: 20140175596
    Abstract: A method of forming a substrate with isolation areas suitable for integration of electronic and photonic devices is provided. A common reticle and photolithographic technique is used to fabricate a mask defining openings for etching first and second trench isolation areas in a substrate, with the openings for the second trench isolation areas being wider than the openings for the first trench isolation areas. The first and second trench isolation areas are etched in the substrate through the mask. The second trench isolation areas are further etched to the deeper than the first trench isolation areas. The trench isolation areas are filled with oxide material. Electrical devices can be formed on the substrate and electrically isolated by the first trench isolation areas and photonic devices can be formed over the second trench isolation areas and be optically isolated from the substrate.
    Type: Application
    Filed: January 9, 2014
    Publication date: June 26, 2014
    Applicant: Micron Technology, Inc.
    Inventors: Roy Meade, Gurtej Sandhu
  • Publication number: 20140166972
    Abstract: Self-aligning fabrication methods for forming memory access devices comprising a doped chalcogenide material. The methods may be used for forming three-dimensionally stacked cross point memory arrays. The method includes forming an insulating material over a first conductive electrode, patterning the insulating material to form vias that expose portions of the first conductive electrode, forming a memory access device within the vias of the insulating material and forming a memory element over the memory access device, wherein data stored in the memory element is accessible via the memory access device. The memory access device is formed of a doped chalcogenide material and formed using a self-aligned fabrication method.
    Type: Application
    Filed: February 20, 2014
    Publication date: June 19, 2014
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Neil Greeley, Gurtej Sandhu, John Smythe, Bhaskar Srinivasan
  • Patent number: 8747557
    Abstract: The present invention is generally directed to a system for controlling placement of nanoparticles, and methods of using same. In one illustrative embodiment, the device includes a substrate and a plurality of funnels in the substrate, wherein each of the funnels comprises an inlet opening and an elongated, rectangular shaped outlet opening. In one illustrative embodiment, the method includes creating a dusty plasma comprising a plurality of carbon nanotubes, positioning a mask between the dusty plasma and a desired target for the carbon nanotubes, the mask having a plurality of openings extending therethrough, and extinguishing the dusty plasma to thereby allow at least some of the carbon nanotubes in the dusty plasma to pass through at least some of the plurality of openings in the mask and land on the target.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: June 10, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Krupakar Murali Subramanian, Neal Rueger, Gurtej Sandhu
  • Publication number: 20140153867
    Abstract: A photonic device and methods of formation that provide an area providing reduced optical coupling between a substrate and an inner core of the photonic device are described. The area is formed using holes in the inner core and an outer cladding. The holes may be filled with materials which provide a photonic crystal. Thus, the photonic device may function as a waveguide and as a photonic crystal.
    Type: Application
    Filed: February 10, 2014
    Publication date: June 5, 2014
    Applicant: Micron Technology, Inc.
    Inventors: Gurtej Sandhu, Roy Meade
  • Patent number: 8735285
    Abstract: An integrated circuit and a method of formation provide a contact area formed at an angled end of at least one linearly extending conductive line. In an embodiment, conductive lines with contact landing pads are formed by patterning lines in a mask material, cutting at least one of the material lines to form an angle relative to the extending direction of the material lines, forming extensions from the angled end faces of the mask material, and patterning an underlying conductor by etching using said material lines and extension as a mask. In another embodiment, at least one conductive line is cut at an angle relative to the extending direction of the conductive line to produce an angled end face, and an electrical contact landing pad is formed in contact with the angled end face.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: May 27, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej Sandhu, Scott Sills
  • Patent number: 8723252
    Abstract: A vertical semiconductor material mesa upstanding from a semiconductor base that forms a conductive channel between first and second doped regions. The first doped region is electrically coupled to one or more first silicide layers on the surface of the base. The second doped region is electrically coupled to one of a plurality of second silicide layers on the upper surface of the mesa. A gate conductor is provided on one or more sidewalls of the mesa.
    Type: Grant
    Filed: September 6, 2012
    Date of Patent: May 13, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej Sandhu, John K. Zahurak, Jay Parks
  • Publication number: 20140126854
    Abstract: An optical waveguide for transmitting an optical signal input to the optical waveguide with a first frequency. The optical waveguide includes a plurality of modulator circuits configured along an optical transmission channel. Each modulator circuit includes at least one resonant structure that resonates at the first frequency when the modulator circuit that includes the at least one resonant structure is at a resonant temperature. Each modulator circuit has a different resonant temperature.
    Type: Application
    Filed: January 13, 2014
    Publication date: May 8, 2014
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Roy Meade, Gurtej Sandhu
  • Patent number: 8718466
    Abstract: A wave division multiplexing (WDM) system is disclosed which accommodates shifts in the resonant frequency of optical modulators by using at least two carriers per optical communications channel and at least two resonant modulator circuits respectively associated with the carriers within each optical modulator. A first resonant modulator circuit resonates with a first carrier and a second resonates with a second carrier when there is a shift in resonance frequency of the at least two resonant optical modulator circuits. A switch circuit controls which carrier is being modulated by its respective resonant modulator circuit.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: May 6, 2014
    Assignee: Micron Technology Inc.
    Inventors: Roy Meade, Gurtej Sandhu
  • Patent number: 8703396
    Abstract: Some embodiments include methods of forming patterns of openings. The methods may include forming spaced features over a substrate. The features may have tops and may have sidewalls extending downwardly from the tops. A first material may be formed along the tops and sidewalls of the features. The first material may be formed by spin-casting a conformal layer of the first material across the features, or by selective deposition along the features relative to the substrate. After the first material is formed, fill material may be provided between the features while leaving regions of the first material exposed. The exposed regions of the first material may then be selectively removed relative to both the fill material and the features to create the pattern of openings.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: April 22, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Scott Sllls, Gurtej Sandhu, John Smythe, Ming Zhang
  • Publication number: 20140097503
    Abstract: A memory array that includes access devices that are each electrically coupled to more than one memory cell. The memory cells are coupled to the access devices via diode devices. The access devices include vertical semiconductor material mesas upstanding from a semiconductor base that form a conductive channel between first and second doped regions, and also planar access devices.
    Type: Application
    Filed: December 13, 2013
    Publication date: April 10, 2014
    Applicant: MICRON TECHNOLOGY, INC.
    Inventor: Gurtej Sandhu
  • Publication number: 20140094026
    Abstract: An integrated circuit and a method of formation provide a contact area formed at an angled end of at least one linearly extending conductive line. In an embodiment, conductive lines with contact landing pads are formed by patterning lines in a mask material, cutting at least one of the material lines to form an angle relative to the extending direction of the material lines, forming extensions from the angled end faces of the mask material, and patterning an underlying conductor by etching using said material lines and extension as a mask. In another embodiment, at least one conductive line is cut at an angle relative to the extending direction of the conductive line to produce an angled end face, and an electrical contact landing pad is formed in contact with the angled end face.
    Type: Application
    Filed: December 4, 2013
    Publication date: April 3, 2014
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Gurtej Sandhu, Scott Sills
  • Patent number: 8686411
    Abstract: Self-aligning fabrication methods for forming memory access devices comprising a doped chalcogenide material. The methods may be used for forming three-dimensionally stacked cross point memory arrays. The method includes forming an insulating material over a first conductive electrode, patterning the insulating material to form vias that expose portions of the first conductive electrode, forming a memory access device within the vias of the insulating material and forming a memory element over the memory access device, wherein data stored in the memory element is accessible via the memory access device. The memory access device is formed of a doped chalcogenide material and formed using a self-aligned fabrication method.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: April 1, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Neil Greeley, Bhaskar Srinivasan, Gurtej Sandhu, John Smythe
  • Patent number: 8686487
    Abstract: Semiconductor devices include one or more transistors having a floating gate and a control gate. In at least one embodiment, the floating gate comprises an intermediate portion extending between two end portions. The intermediate portion has an average cross-sectional area less than one or both of the end portions. In some embodiments, the intermediate portion may comprise a single nanowire. In additional embodiments, semiconductor devices have one or more transistors having a control gate and a floating gate in which a surface of the control gate opposes a lateral side surface of a floating gate that defines a recess in the floating gate. Electronic systems include such semiconductor devices. Methods of forming semiconductor devices include, for example, forming a floating gate having an intermediate portion extending between two end portions, and configuring the intermediate portion to have an average cross-sectional area less than one or both of the end portions.
    Type: Grant
    Filed: June 14, 2007
    Date of Patent: April 1, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej Sandhu, Chandra Mouli, Di Li
  • Publication number: 20140087563
    Abstract: Multiple pitch-multiplied spacers are used to form mask patterns having features with exceptionally small critical dimensions. One of each pair of spacers formed mandrels is removed and alternating layers, formed of two mutually selectively etchable materials, are deposited around the remaining spacers. Layers formed of one of the materials are then etched, leaving behind vertically-extending layers formed of the other of the materials, which form a mask pattern. Alternatively, instead of depositing alternating layers, amorphous carbon is deposited around the remaining spacers followed by a plurality of cycles of forming pairs of spacers on the amorphous carbon, removing one of the pairs of spacers and depositing an amorphous carbon layer. The cycles can be repeated to form the desired pattern. Because the critical dimensions of some features in the pattern can be set by controlling the width of the spaces between spacers, exceptionally small mask features can be formed.
    Type: Application
    Filed: December 2, 2013
    Publication date: March 27, 2014
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Sanket Sant, Gurtej Sandhu, Neal R. Rueger
  • Patent number: 8682129
    Abstract: A photonic device and methods of formation that provide an area providing reduced optical coupling between a substrate and an inner core of the photonic device are described. The area is formed using holes in the inner core and an outer cladding. The holes may be filled with materials which provide a photonic crystal. Thus, the photonic device may function as a waveguide and as a photonic crystal.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: March 25, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej Sandhu, Roy Meade
  • Patent number: 8665640
    Abstract: A magnetic memory cell including a soft magnetic layer and a coupling layer, and methods of operating the memory cell are provided. The memory cell includes a stack with a free ferromagnetic layer and a pinned ferromagnetic layer, and a soft magnetic layer and a coupling layer may also be formed as layers in the stack. The coupling layer may cause antiferromagnetic coupling to induce the free ferromagnetic layer to be magnetized in a direction antiparallel to the magnetization of the soft magnetic layer, or the coupling layer may cause ferromagnetic coupling to induce the free ferromagnetic layer to be magnetized in a direction parallel to the magnetization of the soft magnetic layer. The coupling layer, through a coupling effect, reduces the critical switching current of the memory cell.
    Type: Grant
    Filed: July 9, 2012
    Date of Patent: March 4, 2014
    Assignee: Micron Technologies, Inc.
    Inventors: Jun Liu, Gurtej Sandhu
  • Patent number: 8652934
    Abstract: A method of forming a substrate with isolation areas suitable for integration of electronic and photonic devices is provided. A common reticle and photolithographic technique is used to fabricate a mask defining openings for etching first and second areas in a substrate, with the openings for the second trench isolation areas being wider than the openings for the first trench isolation areas. The first and second trench isolation areas are etched in the substrate through the mask and filled with an oxide material. The oxide material is removed from the bottom of the second trench isolation areas. The second trench isolation areas are further etched to the deeper than the first trench isolation areas, and are then filled with oxide material. Electrical devices can be formed on the substrate and electrically isolated by the first trench isolation areas and photonic devices can be formed over the second trench isolation areas and be optically isolated from the substrate.
    Type: Grant
    Filed: December 26, 2012
    Date of Patent: February 18, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Roy Meade, Gurtej Sandhu