Patents by Inventor Gururaj Naik

Gururaj Naik has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11963042
    Abstract: A system for offloading traffic from a cellular network to a broadcast network is provided. The offloading mechanism caters to both unicast and broadcast traffic. The system includes a converged cellular core network, World Wide Web, a CDN, a Broadcast Offload Packet Core (BO-PC), a cellular base station, a Broadcast Radio Head, and a converged UE. The converged cellular core network includes an enhanced packet core, a policy rules engine and a packet inspection and steering unit. The BO-PC includes a Broadcast Proxy, a subscriber database, a Broadcast Offload Service Center, a Broadcast Offload Gateway and an analytics engine. For offloading the unicast traffic, the packet inspection and steering unit identifies sessions that are offloaded for supporting offload of the traffic from the converged cellular core network to the broadcast network.
    Type: Grant
    Filed: March 18, 2021
    Date of Patent: April 16, 2024
    Assignee: SAANKHYA LABS PVT. LTD.
    Inventors: Arindam Chakraborty, Makarand Kulkarni, Anindya Saha, Gururaj Padaki, Parag Naik, Preetham Uthaiah
  • Publication number: 20240107376
    Abstract: A system for offloading traffic from a cellular network to a broadcast network is provided. The offloading mechanism caters to both unicast and broadcast traffic. The system includes a converged cellular core network, World Wide Web, a CDN, a Broadcast Offload Packet Core (BO-PC), a cellular base station, a Broadcast Radio Head, and a converged UE. The converged cellular core network includes an enhanced packet core, a policy rules engine and a packet inspection and steering unit. The BO-PC includes a Broadcast Proxy, a subscriber database, a Broadcast Offload Service Center, a Broadcast Offload Gateway and an analytics engine. For offloading the unicast traffic, the packet inspection and steering unit identifies sessions that are offloaded for supporting offload of the traffic from the converged cellular core network to the broadcast network.
    Type: Application
    Filed: March 18, 2021
    Publication date: March 28, 2024
    Inventors: Arindam Chakraborty, Makarand Kulkarni, Anindya Saha, Gururaj Padaki, Parag Naik, Preetham Uthaiah
  • Publication number: 20200054752
    Abstract: Disclosed herein are nanoparticle-based plasmonic solutions to therapeutic applications employing titanium nitride (TiN) and other non-stoichiometric compounds as the plasmonic material. Current solutions are suboptimal because they require complex shapes, large particle sizes, and a narrow range of sizes, in order to achieve plasmonic resonances in the biological window. The nanoparticles discloses herein provide plasmonic resonances occurring in the biological window even with small sizes, simple shapes, and better size dispersion restrictions. Local heating efficiencies of such nanoparticles outperform currently used Au and transition metal nanoparticles. The use of smaller particles with simpler shapes and better heating efficiencies allows better diffusion properties into tumor regions, larger penetration depth of light into the biological tissue, and the ability to use excitation light of less power.
    Type: Application
    Filed: October 28, 2019
    Publication date: February 20, 2020
    Applicant: Purdue Research Foundation
    Inventors: Urcan Guler, Alexander Kildishev, Gururaj Naik, Alexandra Boltasseva, Vladimir M. Shalaev
  • Patent number: 9784888
    Abstract: A titanium nitride-based metamaterial, and method for producing the same, is disclosed, consisting of ultrathin, smooth, and alternating layers of a plasmonic titanium nitride (TiN) material and a dielectric material, grown on a substrate to form a superlattice. The dielectric material is made of A1-xScxN, where ‘x’ ranges in value from 0.2 to 0.4. The layers of alternating material have sharp interfaces, and each layer can range from 1-20 nanometers in thickness. Metamaterials based on titanium TiN, a novel plasmonic building block, have many applications including, but not ‘limited to emission enhancers, computer security, etc. The use of nitrogen vacancy centers in diamond, and light emitting diode (LED) efficiency enhancement is of particular interest.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: October 10, 2017
    Assignee: PURDUE RESEARCH FOUNDATION
    Inventors: Gururaj Naik, Bivas Saha, Timothy Sands, Vladimir Shalaev, Alexandra Boltasseva
  • Patent number: 9343088
    Abstract: An apparatus and method for heat-assisted magnetic recording (HAMR) employing a near-field transducer (NFT) made of plasmonic ceramic materials or intermetallics are disclosed. The NFT is made of a plasmonic material as well as a protective outer layer, which provides for longer usefulness and improved performance of the NFT and recording device. The plasmonic materials used include but are not limited to TiNx, ZrNx, HfNx, TaNx, VNx, TiSi2?x, TiAlxNy, TiZrxNy, ZnO, SnO2, In2O3, RuO2, Lu2O3, WO2, and MgB2. Such materials, in combination with a protective layer, provide higher resistances and greater performance at temperatures required for HAMR, ranging from 300 up to 500 degrees Celsius.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: May 17, 2016
    Assignee: PURDUE RESEARCH FOUNDATION
    Inventors: Urcan Guler, Alexander Kildishev, Vladimir M. Shalaev, Alexandra Boltasseva, Donald Stocks, Gururaj Naik
  • Publication number: 20160120978
    Abstract: Disclosed herein are nanoparticle-based plasmonic solutions to therapeutic applications employing titanium nitride (TiN) and other non-stoichiometric compounds as the plasmonic material. Current solutions are suboptimal because they require complex shapes, large particle sizes, and a narrow range of sizes, in order to achieve plasmonic resonances in the biological window. The nanoparticles discloses herein provide plasmonic resonances occurring in the biological window even with small sizes, simple shapes, and better size dispersion restrictions. Local heating efficiencies of such nanoparticles outperform currently used Au and transition metal nanoparticles. The use of smaller particles with simpler shapes and better heating efficiencies allows better diffusion properties into tumor regions, larger penetration depth of light into the biological tissue, and the ability to use excitation light of less power.
    Type: Application
    Filed: May 23, 2014
    Publication date: May 5, 2016
    Inventors: Urcan GULER, Alexander KILDISHEV, Gururaj NAIK, Alexandra BOLTASSEVA, Vladimir M. SHALAEV
  • Publication number: 20150288318
    Abstract: The present invention provides a new system and new devices comprising highly efficient metamaterial-based absorbers and emitters which may be employed in various energy harvesting applications Compelling conditions such as high temperatures. The employment of ceramic materials in such applications enables devices with longer lifetimes and improved performance. Specific geometric and structural designs, e.g., by arrangement of plasmonic and dielectric structures, of the metamaterials provide for efficient absorption of light within a broad spectral range and emission of that energy in a particular range via selective emitters which may, in turn, be coupled to other devices.
    Type: Application
    Filed: June 6, 2014
    Publication date: October 8, 2015
    Inventors: Urcan Guler, Alexander Kildishev, Vladimir M. Shalaev, Alexandra Boltasseva, Gururaj Naik
  • Publication number: 20150287425
    Abstract: An apparatus and method for heat-assisted magnetic recording (HAMR) employing a near-field transducer (NFT) made of plasmonic ceramic materials or intermetallics are disclosed. The NFT is made of a piasmonic material as well as a protective outer layer, which provides for longer usefulness and improved performance of the NFT and recording device. The plasmonic materials used include but are not limited to TiNx, ZrNx, HfNx, TaNx, VNx, TiSi2?x, TiAlxNy, TiZrxNy, ZnO, SnO2, In2O3, RuO2, Lu2O3, WO2, and MgB2. Such materials, in combination with a protective layer, provide higher resistances and greater performance at temperatures required for HAMR, ranging from 300 up to 500 degrees Celsius.
    Type: Application
    Filed: May 19, 2014
    Publication date: October 8, 2015
    Inventors: Urcan Guler, Alexander Kildishev, Vladimir M. Shalaev, Alexandra Boltasseva, Donald Stocks, Gururaj Naik