Patents by Inventor Gyorgy Hutvagner

Gyorgy Hutvagner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11359196
    Abstract: The present invention relates to the discovery of a method for inhibiting RNA silencing in a target sequence-specific manner. RNA silencing requires a set of conserved cellular factors to suppress expression of gene-encoded polypeptide. The invention provides compositions for sequence-specific inactivation of the RISC component of the RNA silencing pathway, and methods of use thereof. The RISC inactivators of the present invention enable a variety of methods for identifying and characterizing miRNAs and siRNAs, RISC-associated factors, and agents capable of modulating RNA silencing. Therapeutic methods and compositions incorporating RISC inactivators and therapeutic agents identified through use of RISC inactivators are also featured.
    Type: Grant
    Filed: April 8, 2016
    Date of Patent: June 14, 2022
    Assignee: UNIVERSITY OF MASSACHUSETTS
    Inventors: Gyorgy Hutvagner, Phillip D. Zamore
  • Publication number: 20200291396
    Abstract: The present invention provides methods of enhancing the efficacy and specificity of RNA silencing. The invention also provides compositions for mediating RNA silencing. In particular, the invention provides siRNAs, siRNA-like molecules, shRNAs, vectors and transgenes having improved specificity and efficacy in mediating silencing of a target gene. Therapeutic methods are also featured.
    Type: Application
    Filed: February 24, 2020
    Publication date: September 17, 2020
    Inventors: Phillip D. ZAMORE, Gyorgy HUTVAGNER, Dianne SCHWARZ, Martin SIMARD
  • Patent number: 10731155
    Abstract: The invention provides engineered RNA precursors that when expressed in a cell are processed by the cell to produce targeted small interfering RNAs (siRNAs) that selectively silence targeted genes (by cleaving specific mRNAs) using the cell's own RNA interference (RNAi) pathway. By introducing nucleic acid molecules that encode these engineered RNA precursors into cells in vivo with appropriate regulatory sequences, expression of the engineered RNA precursors can be selectively controlled both temporally and spatially, i.e., at particular times and/or in particular tissues, organs, or cells.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: August 4, 2020
    Assignee: UNIVERSITY OF MASSACHUSETTS
    Inventors: Phillip D. Zamore, Juanita McLachlan, Gyorgy Hutvagner, Alla Grishok, Craig C. Mello
  • Patent number: 10604754
    Abstract: The present invention provides methods of enhancing the efficacy and specificity of RNA silencing. The invention also provides compositions for mediating RNA silencing. In particular, the invention provides siRNAs, siRNA-like molecules, shRNAs, vectors and transgenes having improved specificity and efficacy in mediating silencing of a target gene. Therapeutic methods are also featured.
    Type: Grant
    Filed: June 3, 2014
    Date of Patent: March 31, 2020
    Assignee: UNIVERSITY OF MASSACHUSETTS
    Inventors: Phillip D. Zamore, Gyorgy Hutvagner, Dianne Schwarz, Martin Simard
  • Publication number: 20180163206
    Abstract: The invention provides engineered RNA precursors that when expressed in a cell are processed by the cell to produce targeted small interfering RNAs (siRNAs) that selectively silence targeted genes (by cleaving specific mRNAs) using the cell's own RNA interference (RNAi) pathway. By introducing nucleic acid molecules that encode these engineered RNA precursors into cells in vivo with appropriate regulatory sequences, expression of the engineered RNA precursors can be selectively controlled both temporally and spatially, i.e., at particular times and/or in particular tissues, organs, or cells.
    Type: Application
    Filed: November 15, 2017
    Publication date: June 14, 2018
    Inventors: Phillip D. Zamore, Juanita McLachlan, Gyorgy Hutvagner, Alla Grishok, Craig C. Mello
  • Patent number: 9850487
    Abstract: The invention provides engineered RNA precursors that when expressed in a cell are processed by the cell to produce targeted small interfering RNAs (siRNAs) that selectively silence targeted genes (by cleaving specific mRNAs) using the cell's own RNA interference (RNAi) pathway. By introducing nucleic acid molecules that encode these engineered RNA precursors into cells in vivo with appropriate regulatory sequences, expression of the engineered RNA precursors can be selectively controlled both temporally and spatially, i.e., at particular times and/or in particular tissues, organs, or cells.
    Type: Grant
    Filed: September 15, 2015
    Date of Patent: December 26, 2017
    Assignee: UNIVERSITY OF MASSACHUSETTS
    Inventors: Phillip D. Zamore, Juanita McLachlan, Gyorgy Hutvagner, Alla Grishok, Craig C. Mello
  • Patent number: 9611472
    Abstract: The present invention provides compositions for RNA interference and methods of use thereof. In particular, the invention provides single-stranded small interfering RNAs. Functional and genomic and proteomic methods are featured. Therapeutic methods are also featured.
    Type: Grant
    Filed: March 20, 2014
    Date of Patent: April 4, 2017
    Assignee: University of Massachusetts
    Inventors: Phillip D. Zamore, Gyorgy Hutvagner, Dianne Schwarz, Guiliang Tang, Benjamin Haley
  • Publication number: 20160362685
    Abstract: The invention provides engineered RNA precursors that when expressed in a cell are processed by the cell to produce targeted small interfering RNAs (siRNAs) that selectively silence targeted genes (by cleaving specific mRNAs) using the cell's own RNA interference (RNAi) pathway. By introducing nucleic acid molecules that encode these engineered RNA precursors into cells in vivo with appropriate regulatory sequences, expression of the engineered RNA precursors can be selectively controlled both temporally and spatially, i.e., at particular times and/or in particular tissues, organs, or cells.
    Type: Application
    Filed: September 15, 2015
    Publication date: December 15, 2016
    Inventors: Phillip D. Zamore, Juanita McLachlan, Gyorgy Hutvagner, Alla Grishok, Craig C. Mello
  • Publication number: 20160319279
    Abstract: The present invention relates to the discovery of a method for inhibiting RNA silencing in a target sequence-specific manner. RNA silencing requires a set of conserved cellular factors to suppress expression of gene-encoded polypeptide. The invention provides compositions for sequence-specific inactivation of the RISC component of the RNA silencing pathway, and methods of use thereof. The RISC inactivators of the present invention enable a variety of methods for identifying and characterizing miRNAs and siRNAs, RISC-associated factors, and agents capable of modulating RNA silencing. Therapeutic methods and compositions incorporating RISC inactivators and therapeutic agents identified through use of RISC inactivators are also featured.
    Type: Application
    Filed: April 8, 2016
    Publication date: November 3, 2016
    Inventors: Gyorgy Hutvagner, Phillip D. Zamore
  • Patent number: 9334497
    Abstract: The present invention relates to the discovery of a method for inhibiting RNA silencing in a target sequence-specific manner. RNA silencing requires a set of conserved cellular factors to suppress expression of gene-encoded polypeptide. The invention provides compositions for sequence-specific inactivation of the RISC component of the RNA silencing pathway, and methods of use thereof. The RISC inactivators of the present invention enable a variety of methods for identifying and characterizing miRNAs and siRNAs, RISC-associated factors, and agents capable of modulating RNA silencing. Therapeutic methods and compositions incorporating RISC inactivators and therapeutic agents identified through use of RISC inactivators are also featured.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: May 10, 2016
    Assignee: UNIVERSITY OF MASSACHUSETTS
    Inventors: Gyorgy Hutvagner, Phillip D. Zamore
  • Publication number: 20160102309
    Abstract: The invention provides engineered RNA precursors that when expressed in a cell are processed by the cell to produce targeted small interfering RNAs (siRNAs) that selectively silence targeted genes (by cleaving specific mRNAs) using the cell's own RNA interference (RNAi) pathway. By introducing nucleic acid molecules that encode these engineered RNA precursors into cells in vivo with appropriate regulatory sequences, expression of the engineered RNA precursors can be selectively controlled both temporally and spatially, i.e., at particular times and/or in particular tissues, organs, or cells.
    Type: Application
    Filed: September 15, 2015
    Publication date: April 14, 2016
    Inventors: Phillip D. Zamore, Juanita McLachlan, Gyorgy Hutvagner, Alla Grishok, Craig C. Mello
  • Patent number: 9175287
    Abstract: The invention provides engineered RNA precursors that when expressed in a cell are processed by the cell to produce targeted small interfering RNAs (siRNAs) that selectively silence targeted genes (by cleaving specific mRNAs) using the cell's own RNA interference (RNAi) pathway. By introducing nucleic acid molecules that encode these engineered RNA precursors into cells in vivo with appropriate regulatory sequences, expression of the engineered RNA precursors can be selectively controlled both temporally and spatially, i.e., at particular times and/or in particular tissues, organs, or cells.
    Type: Grant
    Filed: September 9, 2013
    Date of Patent: November 3, 2015
    Assignee: University of Massachusetts
    Inventors: Phillip D. Zamore, Juanita McLachlan, Gyorgy Hutvagner, Alla Grishok, Craig C. Mello
  • Patent number: 9121018
    Abstract: The present invention provides methods of enhancing the efficacy and specificity of RNA silencing. The invention also provides compositions for mediating RNA silencing. In particular, the invention provides siRNAs, siRNA-like molecules, shRNAs, vectors and transgenes having improved specificity and efficacy in mediating silencing of a target gene. Therapeutic methods are also featured.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: September 1, 2015
    Assignee: University of Massachusetts
    Inventors: Phillip D. Zamore, Gyorgy Hutvagner, Dianne Schwarz, Martin Simard
  • Publication number: 20140373188
    Abstract: The present invention provides compositions for RNA interference and methods of use thereof. In particular, the invention provides single-stranded small interfering RNAs. Functional and genomic and proteomic methods are featured. Therapeutic methods are also featured.
    Type: Application
    Filed: March 20, 2014
    Publication date: December 18, 2014
    Applicant: UNIVERSITY OF MASSACHUSETTS
    Inventors: Phillip D. ZAMORE, Gyorgy HUTVAGNER, Dianne SCHWARZ, Guiliang TANG, Benjamin HALEY
  • Publication number: 20140322813
    Abstract: The present invention provides methods of enhancing the efficacy and specificity of RNA silencing. The invention also provides compositions for mediating RNA silencing. In particular, the invention provides siRNAs, siRNA-like molecules, shRNAs, vectors and transgenes having improved specificity and efficacy in mediating silencing of a target gene. Therapeutic methods are also featured.
    Type: Application
    Filed: June 3, 2014
    Publication date: October 30, 2014
    Inventors: Phillip D. ZAMORE, Gyorgy HUTVAGNER, Dianne SCHWARZ, Martin SIMARD
  • Publication number: 20140194490
    Abstract: The present invention relates to the discovery of a method for inhibiting RNA silencing in a target sequence-specific manner. RNA silencing requires a set of conserved cellular factors to suppress expression of gene-encoded polypeptide. The invention provides compositions for sequence-specific inactivation of the RISC component of the RNA silencing pathway, and methods of use thereof. The RISC inactivators of the present invention enable a variety of methods for identifying and characterizing miRNAs and siRNAs, RISC-associated factors, and agents capable of modulating RNA silencing. Therapeutic methods and compositions incorporating RISC inactivators and therapeutic agents identified through use of RISC inactivators are also featured.
    Type: Application
    Filed: December 2, 2013
    Publication date: July 10, 2014
    Inventors: Gyorgy HUTVAGNER, Phillip D. ZAMORE
  • Publication number: 20140179760
    Abstract: The invention provides engineered RNA precursors that when expressed in a cell are processed by the cell to produce targeted small interfering RNAs (siRNAs) that selectively silence targeted genes (by cleaving specific mRNAs) using the cell's own RNA interference (RNAi) pathway. By introducing nucleic acid molecules that encode these engineered RNA precursors into cells in vivo with appropriate regulatory sequences, expression of the engineered RNA precursors can be selectively controlled both temporally and spatially, i.e., at particular times and/or in particular tissues, organs, or cells.
    Type: Application
    Filed: September 9, 2013
    Publication date: June 26, 2014
    Applicant: UNIVERSITY OF MASSACHUSETTS
    Inventors: Phillip D. ZAMORE, Juanita MCLACHLAN, Gyorgy HUTVAGNER, Alla GRISHOK, Craig C. MELLO
  • Patent number: 8729036
    Abstract: The present invention provides compositions for RNA interference and methods of use thereof. In particular, the invention provides single-stranded small interfering RNAs. Functional and genomic and proteomic methods are featured. Therapeutic methods are also featured.
    Type: Grant
    Filed: August 7, 2003
    Date of Patent: May 20, 2014
    Assignee: University of Massachusetts
    Inventors: Phillip D. Zamore, György Hutvágner, Dianne Schwarz, Guiliang Tang, Benjamin Haley
  • Patent number: 8685946
    Abstract: The present invention relates to the discovery of a method for inhibiting RNA silencing in a target sequence-specific manner. RNA silencing requires a set of conserved cellular factors to suppress expression of gene-encoded polypeptide. The invention provides compositions for sequence-specific inactivation of the RISC component of the RNA silencing pathway, and methods of use thereof. The RISC inactivators of the present invention enable a variety of methods for identifying and characterizing miRNAs and siRNAs, RISC-associated factors, and agents capable of modulating RNA silencing. Therapeutic methods and compositions incorporating RISC inactivators and therapeutic agents identified through use of RISC inactivators are also featured.
    Type: Grant
    Filed: November 26, 2004
    Date of Patent: April 1, 2014
    Assignee: Universiy of Massachusetts
    Inventors: György Hutvágner, Phillip D. Zamore
  • Patent number: 8598143
    Abstract: The present invention relates to the discovery of a method for inhibiting RNA silencing in a target sequence-specific manner. RNA silencing requires a set of conserved cellular factors to suppress expression of gene-encoded polypeptide. The invention provides compositions for sequence-specific inactivation of the RISC component of the RNA silencing pathway, and methods of use thereof. The RISC inactivators of the present invention enable a variety of methods for identifying and characterizing miRNAs and siRNAs, RISC-associated factors, and agents capable of modulating RNA silencing. Therapeutic methods and compositions incorporating RISC inactivators and therapeutic agents identified through use of RISC inactivators are also featured.
    Type: Grant
    Filed: November 19, 2008
    Date of Patent: December 3, 2013
    Assignee: University of Massachusetts
    Inventors: Gyorgy Hutvagner, Phillip D. Zamore