Patents by Inventor H. Daniel Lesher

H. Daniel Lesher has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 5494868
    Abstract: A method of producing a self-supporting ceramic composite body having therein at least one cavity which inversely replicates the geometry of a positive mold of parent metal. The method includes embedding the mold of parent metal within a conformable bed of filler to provide therein a cavity shaped and filled by the mold. The assembly is heated to melt the parent metal mold, e.g., an aluminum parent metal mold, and contacted with an oxidant to oxidize the molten parent metal to form a polycrystalline material which grows through the surrounding bed of filler, the molten metal being drawn through the growing polycrystalline material to be oxidized at the interface between the oxidant and previously formed oxidation reaction product whereby the cavity formerly filled by the mold of parent metal is eventually evacuated of the metal. There remains behind a cavity whose shape inversely replicates the original shape of the mold.
    Type: Grant
    Filed: January 3, 1994
    Date of Patent: February 27, 1996
    Assignee: Lanxide Technology Company, LP
    Inventors: Marc S. Newkirk, Andrew W. Urquhart, H. Daniel Lesher
  • Patent number: 5334562
    Abstract: Self-supporting ceramic composite structures having filler embedded therein are taught as being produced by a method which includes infiltrating a permeable mass of filler with polycrystalline material comprising an oxidation reaction product obtained by oxidation of a parent metal such as aluminum and optionally containing therein non-oxidized constituents of the parent metal. The structure is formed by placing a parent metal adjacent to a permeable filler and heating the assembly to melt the parent metal and provide a molten body of parent metal which is contacted with a suitable vapor-phase oxidant. Within a certain temperature region and optionally aided by one or more dopants in or on the parent metal, molten parent metal will migrate through previously formed oxidation reaction product into contact with the oxidant, causing the oxidation reaction product to grow so as to embed the adjacent filler and provide the composite structure.
    Type: Grant
    Filed: February 16, 1993
    Date of Patent: August 2, 1994
    Assignee: Lanxide Technology Company, LP
    Inventors: Marc S. Newkirk, Andrew W. Urquhart, Harry R. Zwicker, H. Daniel Lesher
  • Patent number: 5275987
    Abstract: A method of producing a self-supporting ceramic composite body having therein at least one cavity which inversely replicates the geometry of a positive mold of parent metal. The method includes embedding the mold of parent metal within a conformable bed of filler to provide therein a cavity shaped and filled by the mold. The assembly is heated to melt the parent metal mold, e.g., an aluminum parent metal mold, and contacted with an oxidant to oxidize the molten parent metal to form a polycrystalline material which grows through the surrounding bed of filler, the molten metal being drawn through the growing polycrystalline material to be oxidized at the interface between the oxidant and previously formed oxidation reaction product whereby the cavity formerly filled by the mold of parent metal is eventually evacuated of the metal. There remains behind a cavity whose shape inversely replicates the original shape of the mold.
    Type: Grant
    Filed: November 30, 1992
    Date of Patent: January 4, 1994
    Assignee: Lanxide Technology Company, LP
    Inventors: Marc S. Newkirk, Andrew W. Urquhart, H. Daniel Lesher
  • Patent number: 5187130
    Abstract: Self supporting ceramic composite structures having filler embedded therein produced by a method which includes infiltrating a permeable mass of filler with polycrystalline material comprising an oxidation reaction product obtained by oxidation of a parent metal such as aluminum and optionally containing therein non-oxidized constituents of the parent metal. The structure is formed by placing a parent metal adjacent to a permeable filler and heating the assembly to melt the parent metal and provide a molten body of parent metal which is contacted with a suitable vapor-phase oxidant. Within a certain temperature region and optionally aided by one or more dopants in or on the parent metal, molten parent metal will migrate through previously formed oxidation reaction product into contact with the oxidant, causing the oxidation reaction product to grow so as to embed the adjacent filler and provide the composite structure.
    Type: Grant
    Filed: February 25, 1991
    Date of Patent: February 16, 1993
    Assignee: Lanxide Technology Company, LP
    Inventors: Marc S. Newkirk, Andrew W. Urquhart, Harry R. Zwicker, H. Daniel Lesher
  • Patent number: 5168081
    Abstract: A method of producing a self-supporting ceramic composite body having therein at least one cavity which inversely replicates the geometry of a positive mold of parent metal. The method includes embedding the mold of parent metal within a conformable bed of filler to provide therein a cavity shaped and filled by the mold. The assembly is heated to melt the parent metal mold, e.g., an aluminum parent metal mold, and contacted with an oxidant to oxidize the molten parent metal to form a polycrystalline material which grows through the surrounding bed of filler, the molten metal being drawn through the growing polycrystalline material to be oxidized at the interface between the oxidant and previously formed oxidation reaction product whereby the cavity formerly filled by the mold of parent metal is eventually evacuated of the metal. There remains behind a cavity whose shape inversely replicates the original shape of the mold.
    Type: Grant
    Filed: September 23, 1991
    Date of Patent: December 1, 1992
    Assignee: Lanxide Technology Company, LP
    Inventors: Marc S. Newkirk, Andrew W. Urquhart, H. Daniel Lesher
  • Patent number: 5051382
    Abstract: A method of producing a self-supporting ceramic composite body having therein at least one cavity which inversely replicates the geometry of a positive mold of parent metal. The method includes embedding the mold of parent metal within a conformable bed of filler to provide therein a cavity shaped and filled by the mold. The assembly is heated to melt the parent metal mold, e.g., an aluminum parent metal mold, and contacted with an oxidant to oxidize the molten parent metal to form a polycrystalline material which grows through the surrounding bed of filler, the molten metal being drawn through the growing polycrystalline material to be oxidized at the interface between the oxidant and previously formed oxidation reaction product whereby the cavity formerly filled by the mold of parent metal is eventually evacuated of the metal. There remains behind a cavity whose shape inversely replicates the original shape of the mold.
    Type: Grant
    Filed: March 28, 1989
    Date of Patent: September 24, 1991
    Assignee: Lanxide Technology Company, LP
    Inventors: Marc S. Newkirk, Andrew W. Urquhart, H. Daniel Lesher
  • Patent number: 5047269
    Abstract: An assembly for the preparation of ceramic composite structures includes a segmented container within which a permeable filler is retained and a parent metal body is contacted with the bed of permeable filler. The segmented container is comprised of one or more segments made of a material, such as an inconnel alloy, which has a coefficient of thermal expansion which is significantly greater than that of the filler. The segments are arranged to defined between or among them one or more expansion joints which are effective to accommodate circumferential thermal expansion of the segments to thereby inhibit or prevent volumetric expansion of the container. A method of forming ceramic composite structures includes heating the resulting assembly in the presence of an oxidant to melt and oxidize the parent metal, e.g., aluminum, to form a polycrystalline material comprising an oxidation reaction product which grows through the mass of filler to embed it and thus form the composite structure.
    Type: Grant
    Filed: January 18, 1989
    Date of Patent: September 10, 1991
    Assignee: Lanxide Technology Company, LP
    Inventors: Marc S. Newkirk, H. Daniel Lesher
  • Patent number: 5015609
    Abstract: A method is provided of producing a self-supporting ceramic composite structure having one or more encasement members, such as an encasing steel sleeve, joined to it by growth of the ceramic material to engagement surface(s) of the encasement member(s). A parent metal is contacted with a body of filler which is encased by the encasement member(s). The resulting assembly is heated to melt and oxidize the parent metal, e.g., aluminum, to form a polycrystalline material comprising an oxidation reaction product which grows through the body of filler and stops at the engagement surface(s) of the encasement member(s) which thereby determines the surface geometry of the grown ceramic matrix. Upon cooling, the encasement member(s) is shrink-fitted about the ceramic composite body. The invention also provides the resultant articles, for example, a ceramic composite body having a stainless steel member affixed thereto.
    Type: Grant
    Filed: March 30, 1989
    Date of Patent: May 14, 1991
    Assignee: Lanxide Technology Company, LP
    Inventors: Marc S. Newkirk, H. Daniel Lesher
  • Patent number: 4996176
    Abstract: A method for producing a self-supporting ceramic composite structure which includes a ceramic matrix embedding a filler, includes oxidizing a parent metal to form a polycrystalline material comprising the oxidation reaction product of the parent metal with an oxidant and, optionally, one or more metallic constituents, and the filler embedded by the matrix. The method includes heating a first source of molten parent metal and a source of molten parent metal and contacting the first source of molten parent metal with a permeable bedding of filler. The first source of molten parent metal is reacted with the oxidant to form the oxidation reaction product and is replenished from the reservoir as the reacting continues for a time sufficient to grow the oxidation reaction product to a desired extent and thereby embed at least a portion of the bedding of filler within the oxidation reaction product to form the ceramic composite structure.
    Type: Grant
    Filed: September 28, 1989
    Date of Patent: February 26, 1991
    Assignee: Lanxide Technology Company, LP
    Inventors: Marc S. Newkirk, H. Daniel Lesher, Ratnesh K. Dwivedi, Robert C. Kantner
  • Patent number: 4916113
    Abstract: A method of making self-supporting ceramic composite structures having filler embedded therein includes infiltrating a permeable mass of filler with polycrystalline material comprising an oxidation reaction product obtained by oxidation of a parent metal such as aluminum and optionally containing therein non-oxidized constituents of the parent metal. The structure is formed by placing a parent metal adjacent to a permeable filler and heating the assembly to melt the parent metal and provide a molten body of parent metal which is contacted with a suitable vapor-phase oxidant. Within a certain temperature region and optionally aided by one or more dopants in or on the parent metal, molten parent metal will migrate through previously formed oxidation reaction product into contact with the oxidant, causing the oxidation reaction product to grow so as to embed the adjacent filler and provide the composite structure.
    Type: Grant
    Filed: November 1, 1988
    Date of Patent: April 10, 1990
    Assignee: Lanxide Technology Company, LP
    Inventors: Marc S. Newkirk, Andrew W. Urquhart, Harry R. Zwicker, H. Daniel Lesher
  • Patent number: 4900699
    Abstract: A method for producing a self-supporting ceramic composite structure, which includes a ceramic matrix embedding a filler, includes oxidizing a parent metal to form a polycrystalline material comprising the oxidation reaction product of the parent metal with an oxidant and, optionally, one or more metallic constituents, and the filler embedded by the matrix. The method includes heating a first source of molten parent metal and a reservoir source of molten parent metal and contacting the first source of molten parent metal with a permeable bedding of filler. The first source of molten parent metal is reacted with the oxidant to form the oxidation reaction product and is replenished from the reservoir as the reacting continues for a time sufficient to grow the oxidation reaction product to a desired extent and thereby embed at least a portion of the bedding of filler within the oxidation reaction product to form the ceramic composite structure.
    Type: Grant
    Filed: September 16, 1986
    Date of Patent: February 13, 1990
    Assignee: Lanxide Technology Company, LP
    Inventors: Marc S. Newkirk, H. Daniel Lesher, Ratnesh K. Dwivedi, Robert C. Kantner
  • Patent number: 4851375
    Abstract: A method of making self-supporting ceramic composite structures having filler embedded therein includes infiltrating a permeable mass of filler with polycrystalline material comprising an oxidation reaction product obtained by oxidation of a parent metal such as aluminum and optionally containing therein non-oxidized constituents of the parent metal. The structure is formed by placing a parent metal adjacent to a permeable filler and heating the assembly to melt the parent metal and provide a molten body of parent metal which is contacted with a suitable vapor-phase oxidant. Within a certain temperature region and optionally aided by one or more dopants in or on the parent metal, molten parent metal will migrate through previously formed oxidation reaction product into contact with the oxidant, causing the oxidation reaction product to grow so as to embed the adjacent filler and provide the composite structure.
    Type: Grant
    Filed: January 17, 1986
    Date of Patent: July 25, 1989
    Assignee: Lanxide Technology Company, LP
    Inventors: Marc S. Newkirk, Andrew W. Urquhart, Harry R. Zwicker, H. Daniel Lesher
  • Patent number: 4847220
    Abstract: The invention relates to a method for producing ceramic composites obtained by oxidation of an aluminum parent metal to form a polycrystalline ceramic material by providing a filler having a coating of a silicon source on at least a portion of said filler different in composition from the primary composition of said filler, said silicon source possessing intrinsic doping properties. A body of molten parent metal, adjacent a mass of the filler material, reacts with an oxidant to form an oxidation reaction product which infiltrates the adjacent mass of filler thereby forming the ceramic composite.
    Type: Grant
    Filed: July 6, 1987
    Date of Patent: July 11, 1989
    Assignee: Lanxide Technology Company, LP
    Inventors: H. Daniel Lesher, Christopher R. Kennedy, Danny R. White, Andrew W. Urquhart
  • Patent number: 4832892
    Abstract: An assembly for the preparation of ceramic composite structures includes a segmented container within which a permeable filler is retained and a parent metal body is contacted with the bed of permeable filler. The segmented container is comprised of one or more segments made of a material, such as an INCONEL alloy, which has a coefficient of thermal expansion which is significantly greater than that of the filler. The segments are arranged to define between or among them one or more expansion joints which are effective to accommodate circumferential thermal expansion of the segments to thereby inhibit or prevent volumetric expansion of the container. A method of forming ceramic composite structures includes heating the resulting assembly in the presence of an oxidant to melt and oxidize the parent metal, e.g., aluminum, to form a polycrystalline material comprising an oxidation reaction product which grows through the mass of filler to embed it and thus form the composite structure.
    Type: Grant
    Filed: January 14, 1987
    Date of Patent: May 23, 1989
    Assignee: Lanxide Technology Company, LP
    Inventors: Marc S. Newkirk, H. Daniel Lesher
  • Patent number: 4828785
    Abstract: A method of producing a self-supporting ceramic composite body having therein at least one cavity which inversely replicates the geometry of a positive mold of parent metal. The method, includes embedding the mold of parent metal within a conformable bed of filler to provide there in a cavity shaped and filled by the mold. The assembly is heated to melt the parent metal mold, e.g., an aluminum parent metal mold, and contacted with an oxidant to oxidize the molten parent metal to form a polycrystalline material which grows through the surrounding bed of filler, the molten metal being drawn through the growing polycrystalline material to be oxidized at the interface between the oxidant and previously formed oxidation reaction product whereby the cavity formerly filled by the mold of parent metal is eventually evacuated of the metal. There remains behind a cavity whose shape inversely replicates the original shape of the mold.
    Type: Grant
    Filed: January 27, 1986
    Date of Patent: May 9, 1989
    Assignee: Lanxide Technology Company, LP
    Inventors: Marc S. Newkirk, Andrew W. Urquhart, H. Daniel Lesher
  • Patent number: 4822759
    Abstract: A method is provided of producing a self-supporting ceramic composite structure having one or more encasement members, such as an encasing steel sleeve, joined to it by growth of the ceramic material to engagement surface(s) of the encasement member(s). A parent metal is contacted with a body of filler which is encased by the encasement member(s). The resulting assembly is heated to melt and oxidize the parent metal, e.g., aluminum, to form a polycrystalline material comprising an oxidation reaction product which grows through the doby of filler and stops at the engagement surface(s) of the encasement member(s) which thereby determines the surface geometry of the grown ceramic matrix. Upon cooling, the encasement member(s) is shrink-fitted about the ceramic composite body. The invention also provides the resultant articles, for example, a ceramic composite body having a stainless steel member affixed thereto.
    Type: Grant
    Filed: June 24, 1988
    Date of Patent: April 18, 1989
    Assignee: Lanxide Technology Company, LP
    Inventors: Marc S. Newkirk, H. Daniel Lesher