Patents by Inventor Hadrien Dumont

Hadrien Dumont has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240151139
    Abstract: Systems and methods for identifying a likelihood that a reservoir of a geological formation received a secondary charge of hydrocarbons of relatively very different thermal maturity of composition are provided. One method includes positioning a downhole acquisition tool in a wellbore in a geological formation and testing one or more fluid properties of the formation fluid. Data processing circuitry may identify whether a relationship of the one or more fluid properties exceeds a first threshold that indicates likely asphaltene instability. When this is the case, data processing circuitry may be used to model the geological formation using a realization scenario in which multiple charges of hydrocarbons of substantially different thermal maturity or substantially different composition, or both, filled a reservoir of the geological formation over geologic time.
    Type: Application
    Filed: January 8, 2024
    Publication date: May 9, 2024
    Inventors: Hadrien Dumont, Vinay K. Mishra, German Garcia, Li Chen, Thomas Pfeiffer, Soraya S. Betancourt Pocaterra, Jerimiah Forsythe, Andrew Emil Pomerantz, Youxiang Zuo, Oliver C. Mullins
  • Publication number: 20230383649
    Abstract: Systems and methods presented herein provide for the generation of acoustic waves for acoustic stimulation, as well as for analysis of subterranean formations, using downhole tools and associated equipment that are not conventionally designed to do so. For example, in certain embodiments, formation testing tools, formation, measurement tools, inflatable packers, and so forth, may be controlled by control systems to, for example, create pressure pulses that generate the acoustic waves. In addition, in certain embodiments, a tool conveyance system that conveys a formation testing or measurement tool into a wellbore may include acoustic receivers that may detect the acoustic waves after they reflect from subterranean features of the formation.
    Type: Application
    Filed: May 24, 2022
    Publication date: November 30, 2023
    Inventors: Henri-Pierre Valero, Hugues Dupont, Pierre Clery, Pierre-Yves Corre, German Garcia, Alejandro Martinez Pereira, Hadrien Dumont
  • Publication number: 20230349286
    Abstract: A method can include receiving sensor data acquired using one or more downhole tool pressure gauges disposed in a borehole in a geologic formation responsive to a fluid operation, where the geologic formation includes a reservoir; and, for the fluid operation, using at least an infinite acting model, determining a distance of pressure influence in the geologic formation.
    Type: Application
    Filed: September 13, 2021
    Publication date: November 2, 2023
    Inventors: Lei Jiang, Li Chen, Hua Yu, Adriaan Gisolf, Hadrien Dumont, Bilgin Altundas, Morten Kristensen
  • Patent number: 11725511
    Abstract: Methods for obtaining in-situ, multi-temperature measurements of fluid properties, such as saturation pressure and asphaltene onset pressure include obtaining a sample of formation fluid using a downhole acquisition tool positioned in a wellbore in a geological formation. The downhole acquisition tool may be stationed at a first depth in the wellbore that has an ambient first temperature. While stationed at the first depth, the downhole acquisition tool may test a first fluid property of the sample to obtain a first measurement point at approximately the first temperature. The downhole acquisition tool may be moved to a subsequent station at a new depth with an ambient second temperature, and another measurement point obtained at approximately the second temperature. From the measurement points, a temperature-dependent relationship of the first fluid property of the first formation fluid may be determined.
    Type: Grant
    Filed: August 30, 2021
    Date of Patent: August 15, 2023
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Hadrien Dumont, Christopher Harrison, Youxiang Zuo, Christopher Albert Babin, Li Chen, Vinay K. Mishra, German Garcia, Abhishek Agarwal, Matthew T. Sullivan
  • Patent number: 11674372
    Abstract: A method can include flowing fluid from a formation from an inlet of a tool to an annulus; flowing spacer fluid from a conduit to the annulus; flowing the fluid and the spacer fluid in the annulus to a station; and collecting the fluid.
    Type: Grant
    Filed: March 22, 2021
    Date of Patent: June 13, 2023
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Hadrien Dumont, Francois Xavier Dubost, Bertrand Claude Theuveny, Adriaan Gisolf, Pierre-Yves Corre
  • Publication number: 20220403737
    Abstract: Methods and downhole tools for operation within in a wellbore that extends into a subterranean formation. The operation includes simultaneously causing a change in a first parameter of fluid drawn into the downhole tool from the formation and determining a change in a second parameter of the fluid relative to the change in the first parameter. A third parameter of the fluid is determined based on the first and second parameter changes.
    Type: Application
    Filed: August 18, 2022
    Publication date: December 22, 2022
    Inventors: Hadrien Dumont, Thomas Pfeiffer, Vinay K. Mishra, German Garcia, Christopher Harrison, Oliver Mullins
  • Publication number: 20220341318
    Abstract: The disclosure provides for a method for sampling fluid from a subterranean formation that is intersected by a wellbore. The method includes performing an initial draw-down at a target interval in the wellbore to pump fluid from the subterranean formation with a 3D radial probe. The method includes isolating the target interval of the wellbore with a packer and providing a residence time within a dead volume of the packer to allow fluid therein to separate into hydrocarbon and water phases. The method includes pumping a sample of the hydrocarbon into a sample chamber while pumping a remainder of the fluid into the wellbore, and testing the sample to determine a hydrocarbon content of the sample.
    Type: Application
    Filed: October 1, 2020
    Publication date: October 27, 2022
    Inventors: German Garcia, Hadrien Dumont, Vinay Kumar Mishra
  • Publication number: 20220335185
    Abstract: The present disclosure relates to a method comprising: receiving a resource model associated with a resource site and receiving one or more objective parameters, such that a first objective parameter comprised in the one or more objective parameters is a function of one or more parameter values of the resource model. The method comprises executing simulations to generate a first uncertainty value based on at least one of a first parameter value and a first uncertainty value of a first parameter of the resource model. The simulations may be executed to generate a first forecast uncertainty value for each scenario comprised in a plurality of scenarios. The method also identifies one service that minimizes an uncertainty value of the objective parameter based on the forecast uncertainty value. The method further includes generating a first visualization comprising the one identified service for viewing by a user via a user interface.
    Type: Application
    Filed: September 4, 2020
    Publication date: October 20, 2022
    Inventors: Morten Kristensen, Marie LeFranc, Bertrand Theuveny, Hadrien Dumont, Nikita Chugunov, Sebastien Roche, Wiwin Yuliana, Zhenning Bao, Erwan Olliero, Ram Sunder Kalyanraman, Thomas Pfeiffer, Claude Signer, Simon Edmundson, Hua Yu, Ke Jiang, Vassilis Varveropoulos, Henri-Pierre Valero, Eric Jeanson, Guillaume Borrel, Pierre Bettinelli, Joel Le Calvez
  • Patent number: 11434755
    Abstract: Methods and downhole tools for operation within in a wellbore that extends into a subterranean formation. The operation includes simultaneously causing a change in a first parameter of fluid drawn into the downhole tool from the formation and determining a change in a second parameter of the fluid relative to the change in the first parameter. A third parameter of the fluid is determined based on the first and second parameter changes.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: September 6, 2022
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Hadrien Dumont, Thomas Pfeiffer, Vinay K. Mishra, German Garcia, Christopher Harrison, Oliver Mullins
  • Patent number: 11421530
    Abstract: A fluid sampling probe may include one or more features that increase the likelihood that a seal will be maintained during a sampling operation, even for sampling operations in unconsolidated formations. This may reduce contamination in formation fluid samples that are obtained during sampling operations. The fluid sampling probe may include a reinforcement ring configured to extend into a geological formation beyond an elastomer portion of the fluid sampling probe, which may support the geological formation and prevent a failure of the formation during sampling operations. The fluid sampling probe may also include a stop sleeve to prevent overextension that could otherwise cause the geological formation to collapse. In addition, the fluid sampling probe may include a relatively wider sealing elastomer that may decrease in height monotonically radially from the center of the fluid sampling probe.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: August 23, 2022
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Stephen Torgerson, Hadrien Dumont, Francois Robert, Christopher Babin, Peter Miller, Tudor Ioan Palaghita, Sebastian Mastrangelo, Gabriel Morosini
  • Publication number: 20220243575
    Abstract: The present disclosure relates to a system that is operable to receive an execution plan and execute a control operation on one or more equipment based operations within the execution plan. The one or more operations may include a data capturing operation associated with a resource site. In one embodiment, the system may be operable to execute at least a first operation in response to a success variable of the data capturing operation indicating a successful execution of the data capturing operation. The first operation may include a quality control operation that is executed by comparing at least one characteristic of the captured data to an expected characteristic to generate quality state data. The quality state data may have one of an acceptable status and an undesirable status. In response to the quality state data indicating an acceptable status for the quality control operation, executing at least a second operation.
    Type: Application
    Filed: September 4, 2020
    Publication date: August 4, 2022
    Inventors: Morten Kristensen, Marie LeFranc, Bertrand Theuveny, Hadrien Dumont, Nikita Chugunov, Sebastien Roche, Wiwin Yuliana, Zhenning Bao, Erwan Olliero, Ram Sunder Kalyanraman, Thomas Pfeiffer, Claude Signer, Simon Edmundson, Hua Yu, Ke Jiang, Vassilis Varveropoulos, Henri-Pierre Valero, Eric Jeanson, Guillaume Borrel, Pierre Bettinelli, Joel Le Calvez
  • Publication number: 20210388722
    Abstract: Methods for obtaining in-situ, multi-temperature measurements of fluid properties, such as saturation pressure and asphaltene onset pressure, are provided. In one example, a sample of formation fluid is obtained using a downhole acquisition tool positioned in a wellbore in a geological formation. The downhole acquisition tool may be stationed at a first depth in the wellbore that has an ambient first temperature. While stationed at the first depth, the downhole acquisition tool may test a first fluid property of the sample to obtain a first measurement point at approximately the first temperature. The downhole acquisition tool may be moved to a subsequent station at a new depth with an ambient second temperature, and another measurement point obtained at approximately the second temperature. From the measurement points, a temperature-dependent relationship of the first fluid property of the first formation fluid may be determined.
    Type: Application
    Filed: August 30, 2021
    Publication date: December 16, 2021
    Inventors: Hadrien Dumont, Christopher Harrison, Youxiang Zuo, Christopher Albert Babin, Li Chen, Vinay K. Mishra, German Garcia, Abhishek Agarwal, Matthew T. Sullivan
  • Publication number: 20210324736
    Abstract: A method includes conveying a wireline toolstring into a wellbore to perform a downhole operation, wherein the wireline toolstring has a single packer disposed thereon. The method also includes positioning the wireline toolstring in the wellbore adjacent a zone of interest, wherein the zone of interest has a barrier is located at one end of the zone of interest and the wireline toolstring is positioned such that the single packer is located adjacent the zone of interest such that the zone of interest is between the single packer and the barrier. The method can also include setting the single packer and performing a wellbore operation.
    Type: Application
    Filed: April 21, 2021
    Publication date: October 21, 2021
    Inventors: Simon Edmundson, Hadrien Dumont, Adriaan Gisolf, Andrea Pagnin, Kenneth Moelhoff, Michael O'Keefe, Magdy Samir Osman, Najib Gharib
  • Publication number: 20210293122
    Abstract: A method can include flowing fluid from a formation from an inlet of a tool to an annulus; flowing spacer fluid from a conduit to the annulus; flowing the fluid and the spacer fluid in the annulus to a station; and collecting the fluid.
    Type: Application
    Filed: March 22, 2021
    Publication date: September 23, 2021
    Inventors: Hadrien Dumont, Francois Xavier Dubost, Bertrand Claude Theuveny, Adriaan Gisolf, Pierre-Yves Corre
  • Patent number: 11105198
    Abstract: Methods for obtaining in-situ, multi-temperature measurements of fluid properties, such as saturation pressure and asphaltene onset pressure include obtaining a sample of formation fluid using a downhole acquisition tool positioned in a wellbore in a geological formation. The downhole acquisition tool may be stationed at a first depth in the wellbore that has an ambient first temperature. While stationed at the first depth, the downhole acquisition tool may test a first fluid property of the sample to obtain a first measurement point at approximately the first temperature. The downhole acquisition tool may be moved to a subsequent station at a new depth with an ambient second temperature, and another measurement point obtained at approximately the second temperature. From the measurement points, a temperature-dependent relationship of the first fluid property of the first formation fluid may be determined.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: August 31, 2021
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Hadrien Dumont, Christopher Harrison, Youxiang Zuo, Christopher Albert Babin, Li Chen, Vinay K. Mishra, German Garcia, Abhishek Agarwal, Matthew T. Sullivan
  • Patent number: 10941656
    Abstract: Apparatus and methods for performing downhole testing. Example apparatus include a downhole tool string for conveying within a wellbore, the downhole tool string comprising an anchor device, a testing device, and a linear or rotary actuator. The anchor device maintains a portion of the downhole tool string in a predetermined position within the wellbore. The testing device is operable to receive a downhole sample from or test a subterranean formation surrounding the wellbore. The linear actuator is connected between the anchor device and testing device, and moves the testing device relative to the anchor device.
    Type: Grant
    Filed: February 2, 2018
    Date of Patent: March 9, 2021
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: German Garcia, Hadrien Dumont, Christopher Albert Babin, Li Chen, Vinay K. Mishra
  • Publication number: 20200378249
    Abstract: Systems and methods for identifying a likelihood that a reservoir of a geological formation received a secondary charge of hydrocarbons of relatively very different thermal maturity of composition are provided. One method includes positioning a downhole acquisition tool in a wellbore in a geological formation and testing one or more fluid properties of the formation fluid. Data processing circuitry may identify whether a relationship of the one or more fluid properties exceeds a first threshold that indicates likely asphaltene instability. When this is the case, data processing circuitry may be used to model the geological formation using a realization scenario in which multiple charges of hydrocarbons of substantially different thermal maturity or substantially different composition, or both, filled a reservoir of the geological formation over geologic time.
    Type: Application
    Filed: August 17, 2020
    Publication date: December 3, 2020
    Inventors: Hadrien Dumont, Vinay K. Mishra, German Garcia, Li Chen, Thomas Pfeiffer, Soraya S. Betancourt Pocaterra, Jerimiah Forsythe, Andrew Emil Pomerantz, Youxiang Zuo, Oliver C. Mullins
  • Publication number: 20200370418
    Abstract: The disclosure relates to a method for flagging at least an event of interest in an unlabeled time series of a parameter relative to a wellsite (including to the well, formation or a wellsite equipment), wherein the time series of the parameter is a signal of the parameter as a function of time. The disclosure also relates to a method for evaluation a downhole operation such as a pressure test using a pressure time series. Such methods comprises collecting a time series, extracting at least an unlabeled subsequence of predetermined duration in the time series, and assigning an event of interest a label, in particular representative of the status of the downhole operation, to at least one of the unlabeled subsequences. A command may be sent to a wellsite operating system based on assigned label.
    Type: Application
    Filed: May 21, 2020
    Publication date: November 26, 2020
    Inventors: Sebastien Fries, Tianjun Hou, Amine Ennaifer, Lei Jiang, Josselin Kherroubi, Hadrien Dumont
  • Patent number: 10746018
    Abstract: Systems and methods for identifying a likelihood that a reservoir of a geological formation received a secondary charge of hydrocarbons of relatively very different thermal maturity of composition are provided. One method includes positioning a downhole acquisition tool in a wellbore in a geological formation and testing one or more fluid properties of the formation fluid. Data processing circuitry may identify whether a relationship of the one or more fluid properties exceeds a first threshold that indicates likely asphaltene instability. When this is the case, data processing circuitry may be used to model the geological formation using a realization scenario in which multiple charges of hydrocarbons of substantially different thermal maturity or substantially different composition, or both, filled a reservoir of the geological formation over geologic time.
    Type: Grant
    Filed: May 19, 2017
    Date of Patent: August 18, 2020
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Hadrien Dumont, Vinay K. Mishra, German Garcia, Li Chen, Thomas Pfeiffer, Soraya S. Betancourt Pocaterra, Jerimiah Forsythe, Andrew Emil Pomerantz, Youxiang Zuo, Oliver C. Mullins
  • Patent number: 10746017
    Abstract: A method includes receiving first fluid property data from a first location in a hydrocarbon reservoir and receiving second fluid property data from a second location in the hydrocarbon reservoir. The method includes performing a plurality of realizations of models of the hydrocarbon reservoir according to a respective plurality of one or more plausible dynamic processes to generate one or more respective modeled fluid properties. The method includes selecting the one or more plausible dynamic processes based at least in part on a relationship between the first fluid property data, the second fluid property data, and the modeled fluid properties obtained from the realizations to identify potential disequilibrium in the hydrocarbon reservoir.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: August 18, 2020
    Assignee: SCHLUMBERGER TECHNOLOGY CORPORATION
    Inventors: Youxiang Zuo, Kang Wang, Andrew E. Pomerantz, Soraya S. Betancourt Pocaterra, Jerimiah Forsythe, Cosan Ayan, Hadrien Dumont, Vinay Mishra, Jesus Alberto Canas, Daniel M. Tetzlaff, Anish Kumar, Vladislav Achourov, Thomas Pfeiffer, Shu Pan, Yi Chen, Armin Kauerauf, Oliver C. Mullins