Patents by Inventor Hai-Quan Mao

Hai-Quan Mao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9539334
    Abstract: The present invention provides a thin mucoadhesive sublingual film composition which provides improved allergen delivery and efficacy at a smaller dose while prolonging the contact time between the allergen and oral antigen presenting cells (APCs), and therefore minimizing the risk of systemic side effects. The thin film compositions of the present invention are also easier to standardize, and removes any need for measuring allergen doses at the physician's office, and which allows for a simplified dosing schedule. Methods of making the thin film compositions and methods for their use are also disclosed.
    Type: Grant
    Filed: May 17, 2013
    Date of Patent: January 10, 2017
    Assignee: John Hopkins University
    Inventors: Robert Wood, Hai-Quan Mao, Corinne Keet, Russell Martin
  • Patent number: 9539009
    Abstract: The instant invention provides compositions and methods for promoting the repair and/or growth of biological tissue, e.g., tubular biological tissue such as nerves. Specifically, the instant invention provides tissue connection devices and tissue repair devices and methods for using these devices.
    Type: Grant
    Filed: December 6, 2013
    Date of Patent: January 10, 2017
    Assignee: The Johns Hopkins University
    Inventors: Ahmet Hoke, Hai-Quan Mao
  • Patent number: 9533068
    Abstract: Ophthalmic suture materials made from biocompatible and biodegradable polymers with high tensile strength for use in drug delivery, methods of making them, and method of using them for ocular surgery and repair have been developed. The suture materials are made from a combination of a biodegradable, biocompatible polymer and a hydrophilic biocompatible polymer. In a preferred embodiment the suture materials are made from a poly(hydroxyl acid) such as poly(l-lactic acid) and a polyalkylene oxide such as poly(ethylene glycol) or a polyalkylene oxide block copolymer. The sutures entrap (e.g., encapsulate) one or more therapeutic, prophylactic or diagnostic agents and provide prolonged release over a period of at least a week, preferably a month.
    Type: Grant
    Filed: May 6, 2013
    Date of Patent: January 3, 2017
    Assignee: The Johns Hopkins University
    Inventors: Fabiana Kimie Kashiwabuchi, Justin Hanes, Hai-Quan Mao, Peter John McDonnell, Qingguo Xu, Shuming Zhang
  • Publication number: 20160331845
    Abstract: Compositions comprising a polymeric micellar nanoparticle composition comprising a block or graft copolymer comprising at least one polycationic polymer and at least one polyethylene glycol (PEG) polymer having an average molecular weight less than 1 kDa, and at least one nucleic acid, wherein the graft or block copolymer and at least one nucleic acid are complexed and condensed into a shaped micellar nanoparticle that is stable in biological media are disclosed. The presently disclosed subject matter also provides a method for preparing the presently disclosed polymeric micellar nanoparticle compositions, a method for targeting at least one metastatic cancer cell in a subject, and a method for treating a disease or condition using the presently disclosed polymeric micellar nanoparticle compositions.
    Type: Application
    Filed: May 13, 2016
    Publication date: November 17, 2016
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: HAI-QUAN MAO, JOHN MICHAEL WILLIFORD, MAANI ARCHANG, IL MINN, YONG REN, JOSE LUIS SANTOS, MARTIN G. POMPER
  • Publication number: 20150125495
    Abstract: The present invention provides a thin mucoadhesive sublingual film composition which provides improved allergen delivery and efficacy at a smaller dose while prolonging the contact time between the allergen and oral antigen presenting cells (APCs), and therefore minimizing the risk of systemic side effects. The thin film compositions of the present invention are also easier to standardize, and removes any need for measuring allergen doses at the physician's office, and which allows for a simplified dosing schedule. Methods of making the thin film compositions and methods for their use are also disclosed.
    Type: Application
    Filed: May 17, 2013
    Publication date: May 7, 2015
    Applicant: John Hopkins University
    Inventors: Robert Wood, Hai-Quan Mao, Corinne Keet, Russell Martin
  • Publication number: 20150118747
    Abstract: An in vitro model system that guides the development of microvasculature, recapitulating the detailed organization of both its cellular and a-cellular components is established. Use of electrostretched fibrin microfibers enables both endothelial layer organization and co-culture of supporting perivascular (mural) cells such as vascular smooth muscle cells and pericytes. The fiber curvature affects the circumferential deposition of endothelial-produced ECM independently of cellular organization and induces deposition of higher quantities of vascular ECM proteins. Further, a luminal multicellular microvascular structure is disclosed.
    Type: Application
    Filed: October 31, 2014
    Publication date: April 30, 2015
    Inventors: Sharon Gerecht, Shuming Zhang, Sebastian F. Barreto Ortiz, Hai-Quan Mao
  • Publication number: 20150118195
    Abstract: The presently disclosed subject matter provides a scalable and electrostretching approach for generating microfibers exhibiting uniaxial alignment from polymer solutions. Such microfibers can be generated from a variety of natural polymers or synthetic polymers. The hydrogel microfibers can be used for controlled release of bioactive agents. The internal uniaxial alignment exhibited by the presently disclosed fibers provides improved mechanical properties to microfibers, contact guidance cues and induces alignment for cells seeded on or within the microfibers.
    Type: Application
    Filed: April 30, 2013
    Publication date: April 30, 2015
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Hai-Quan Mao, Shuming Zhang, Xi Liu, Brian Patrick Ginn
  • Publication number: 20140163589
    Abstract: The instant invention provides compositions and methods for promoting the repair and/or growth of biological tissue, e.g., tubular biological tissue such as nerves. Specifically, the instant invention provides tissue connection devices and tissue repair devices and methods for using these devices.
    Type: Application
    Filed: December 6, 2013
    Publication date: June 12, 2014
    Applicant: The Johns Hopkins University
    Inventors: Ahmet Hoke, Hai-Quan Mao
  • Publication number: 20140081297
    Abstract: The present invention is directed to the compositions and methods of preparing hydrogel-grafted nerve guides for peripheral nerve regeneration. Particularly, the present invention describes the nerve guides and methods for preparation of hydrogel-grafted nerve guides with encapsulated neurotrophic factors and a nanofiber mesh lining the inner surface of the guide. The present invention also provides methods for peripheral nerve repair using these hydrogel-grafted nerve guides.
    Type: Application
    Filed: November 15, 2013
    Publication date: March 20, 2014
    Inventors: Ahmet Hoke, Shawn H. Lim, Xingyu Liu, Hai-Quan Mao
  • Patent number: 8669106
    Abstract: The invention provides, among other things, methods and systems for expanding CD133+ cells. The invention further provides methods and systems for increasing the blood flow to an ischemic tissue in a subject in need thereof, such as to ischemic myocardium. The invention further provides methods and systems for directing differentiation of expanded CD133+ cells. The invention further provides methods and systems for treating a subject with differentiated cells in a subject in need thereof.
    Type: Grant
    Filed: January 9, 2009
    Date of Patent: March 11, 2014
    Assignees: Arteriocyte Inc., Universite Pierre ET Marie Curie (Paris VI)
    Inventors: Ramasamy Sakthivel, Donald J. Brown, Hai-Quan Mao, Luc Douay, Vincent J. Pompili, Kevin McIntosh, Hiranmoy Das, Yukang Zhao
  • Publication number: 20130296933
    Abstract: Ophthalmic suture materials made from biocompatible and biodegradable polymers with high tensile strength for use in drug delivery, methods of making them, and method of using them for ocular surgery and repair have been developed. The suture materials are made from a combination of a biodegradable, biocompatible polymer and a hydrophilic biocompatible polymer. In a preferred embodiment the suture materials are made from a poly(hydroxyl acid) such as poly(l-lactic acid) and a polyalkylene oxide such as poly(ethylene glycol) or a polyalkylene oxide block copolymer. The sutures entrap (e.g., encapsulate) one or more therapeutic, prophylactic or diagnostic agents and provide prolonged release over a period of at least a week, preferably a month.
    Type: Application
    Filed: May 6, 2013
    Publication date: November 7, 2013
    Applicant: The Johns Hopkins University
    Inventors: Fabiana Kimie Kashiwabuchi, Justin Hanes, Hai-Quan Mao, Peter John McDonnell, Himatkumar Patel, Murilo W. Rodrigues, Jesus Vidauri-Martinez, Qingguo Xu, Shuming Zhang
  • Patent number: 8361502
    Abstract: The instant invention provides methods and compositions for the expansion and differentiation of stem cells.
    Type: Grant
    Filed: October 18, 2007
    Date of Patent: January 29, 2013
    Assignee: The Johns Hopkins University
    Inventors: Hai-Quan Mao, Kam W. Leong, Kian-Ngiap Chua, Seeram Ramakrishna
  • Publication number: 20120059399
    Abstract: The instant invention provides compositions and methods for promoting the repair and/or growth of biological tissue, e.g., tubular biological tissue such as nerves. Specifically, the instant invention provides tissue connection devices and tissue repair devices and methods for using these devices.
    Type: Application
    Filed: March 10, 2010
    Publication date: March 8, 2012
    Applicant: THE JOHN HOPKINS UNIVERSITY
    Inventors: Ahmet Hoke, Hai-Quan Mao
  • Publication number: 20110305768
    Abstract: This invention describes a quick-dissolving thin film strips comprising bioactive components encapsulated within pH-sensitive polymeric microparticles. The microparticles are embedded within the thin film and provide protection to components encapsulated within. The invention further describes methods to incorporate bioactive components encapsulated within pH-sensitive polymeric microparticles into a quick-dissolving thin film strip while maintaining the bioactivity of the contained therapeutic agents during thin film formation and microencapsulation.
    Type: Application
    Filed: December 24, 2008
    Publication date: December 15, 2011
    Applicant: The Johns Hopkins University
    Inventors: Hai-Quan Mao, Christopher Ku Yu, Vu Linh Truong, Yang Li, Dhanya Rangaraj, Xuesong Jiang, Sagar Ramesh Shah, Derek Sing
  • Publication number: 20110125170
    Abstract: The present invention is directed to the compositions and methods of preparing hydrogel-grafted nerve guides for peripheral nerve regeneration. Particularly, the present invention describes the nerve guides and methods for preparation of hydrogel-grafted nerve guides with encapsulated neurotrophic factors and a nanofiber mesh lining the inner surface of the guide. The present invention also provides methods for peripheral nerve repair using these hydrogel-grafted nerve guides.
    Type: Application
    Filed: January 26, 2009
    Publication date: May 26, 2011
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Ahmet Hoke, Shawn Hwei-In Lim, Xingyu Liu, Hai-Quan Mao
  • Publication number: 20090285892
    Abstract: The invention provides, among other things, methods and systems for expanding CD133+ cells. The invention further provides methods and systems for increasing the blood flow to an ischemic tissue in a subject in need thereof, such as to ischemic myocardium. The invention further provides methods and systems for directing differentiation of expanded CD133+ cells. The invention further provides methods and systems for treating a subject with differentiated cells in a subject in need thereof.
    Type: Application
    Filed: January 9, 2009
    Publication date: November 19, 2009
    Inventors: Ramasamy Sakthivel, Donald J. Brown, Hai-Quan Mao, Luc Douay, Vincent J. Pompili, Kevin Mclntosh, Hiranmoy Das, Yukang Zhao
  • Publication number: 20090012027
    Abstract: The present invention is directed to a series of new polycationic biodegradable polyphosphoramidates. Process for making the polymers, compositions containing these polymers and bioactive ligands to enhance the cellular uptake ad intracellular trafficking, articles and methods for delivery of drugs and genes using these polymers are described. A gene delivery system based on these polymers is prepared by complex coacervation of nucleic acid (DNA or RNA) with polymers. Targeting ligands and molecules that could facilitate gene transfer can be conjugated to polymers to achieve selective and enhanced gene delivery. The current invention also provides a complex composition with buffering capacity.
    Type: Application
    Filed: June 11, 2008
    Publication date: January 8, 2009
    Inventors: Jun Wang, Hai-Quan Mao, Kam Weng Leong
  • Publication number: 20090004741
    Abstract: The present invention is directed to a series of new polycationic biodegradable polyphosphoramidates. Process for making the polymers, compositions containing these polymers and bioactive ligands to enhance the cellular uptake ad intracellular trafficking, articles and methods for delivery of drugs and genes using these polymers are described. A gene delivery system based on these polymers is prepared by complex coacervation of nucleic acid (DNA or RNA) with polymers. Targeting ligands and molecules that could facilitate gene transfer can be conjugated to polymers to achieve selective and enhanced gene delivery. The current invention also provides a complex composition with buffering capacity.
    Type: Application
    Filed: June 11, 2008
    Publication date: January 1, 2009
    Inventors: Jun Wang, Hai-Quan Mao, Kam Weng Leong
  • Patent number: 7417110
    Abstract: The present invention is directed to a series of new polycationic biodegradable polyphosphoramidates. Process for making the polymers, compositions containing these polymers and bioactive ligands to enhance the cellular uptake ad intracellular trafficking, articles and methods for delivery of drugs and genes using these polymers are described. A gene delivery system based on these polymers is prepared by complex coacervation of nucleic acid (DNA or RNA) with polymers. Targeting ligands and molecules that could facilitate gene transfer can be conjugated to polymers to achieve selective and enhanced gene delivery. The current invention also provides a complex composition with buffering capacity.
    Type: Grant
    Filed: May 14, 2002
    Date of Patent: August 26, 2008
    Inventors: Jun Wang, Hai-Quan Mao, Kam Weng Leong
  • Publication number: 20080176800
    Abstract: The present invention is directed to a biodegradable system for the controlled release of bioactive substances. This system comprises novel biodegradable and biocompatible polyphosphoesters that carry positive charges. Process for making these polyphosphoesters, compositions containing these polyphosphoesters and biologically active substances, articles and methods for delivery of drugs and genes using this system are described. A controlled gene delivery system based on these polyphosphoesters is prepared by complex coacervation of nucleic acid (DNA or RNA) with polymers. The release rates can be manipulated by adjusting the charge ratios of polyphosphoesters to nucleic acids. This gene delivery system yields a higher gene expression in muscle when injected intramuscularly.
    Type: Application
    Filed: January 17, 2008
    Publication date: July 24, 2008
    Inventors: Jun WANG, Hai-Quan MAO, Kam Weng LEONG