Patents by Inventor Haim M. Weissman

Haim M. Weissman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9660691
    Abstract: Techniques for supporting data transmission and reception on multiple bands for carrier aggregation are disclosed. In an exemplary design, an apparatus (e.g., a wireless device) includes first and second antenna interface circuits coupled to first and second antennas, respectively. The first antenna interface circuit includes a first quadplexer for first and second bands. The second antenna interface circuit includes a second quadplexer for the first and second bands. The first quadplexer may be a duplicate of the second quadplexer, which may simplify implementation. Each antenna interface circuit may further include a diplexer, a duplexer, a triplexer, another quadplexer, switches, etc. The first and second quadplexers may support data transmission and reception on two bands in a first band group. Other circuits in the first and second antenna interface circuits may support data transmission and/or reception on additional bands, possibly in one or more other band groups.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: May 23, 2017
    Assignee: QUALCOMM Incorporated
    Inventors: Haim M Weissman, Rimon E Mansour
  • Publication number: 20160365889
    Abstract: Techniques for supporting data transmission and reception on multiple bands for carrier aggregation are disclosed. In an exemplary design, an apparatus (e.g., a wireless device) includes first and second antenna interface circuits coupled to first and second antennas, respectively. The first antenna interface circuit includes a first quadplexer for first and second bands. The second antenna interface circuit includes a second quadplexer for the first and second bands. The first quadplexer may be a duplicate of the second quadplexer, which may simplify implementation. Each antenna interface circuit may further include a diplexer, a duplexer, a triplexer, another quadplexer, switches, etc. The first and second quadplexers may support data transmission and reception on two bands in a first band group. Other circuits in the first and second antenna interface circuits may support data transmission and/or reception on additional bands, possibly in one or more other band groups.
    Type: Application
    Filed: August 26, 2016
    Publication date: December 15, 2016
    Inventors: Haim M. WEISSMAN, Rimon E. MANSOUR
  • Patent number: 9467191
    Abstract: Techniques support data transmission and reception on multiple bands for carrier aggregation. In an exemplary design, an apparatus (e.g., a wireless device) includes first and second antenna interface circuits coupled to first and second antennas, respectively. The first antenna interface circuit includes a first quadplexer for first and second bands. The second antenna interface circuit includes a second quadplexer for the first and second bands. The first quadplexer may be a duplicate of the second quadplexer, which may simplify implementation. Each antenna interface circuit may further include a diplexer, a duplexer, a triplexer, another quadplexer, switches, etc. The first and second quadplexers may support data transmission and reception on two bands in a first band group. Other circuits in the first and second antenna interface circuits may support data transmission and/or reception on additional bands, possibly in one or more other band groups.
    Type: Grant
    Filed: November 12, 2012
    Date of Patent: October 11, 2016
    Assignee: QUALCOMM Incorporated
    Inventors: Haim M Weissman, Rimon E Mansour
  • Patent number: 9419674
    Abstract: Shared filters may be used for both transmit and receive paths. In an exemplary design, an apparatus (e.g., a wireless device, an integrated circuit, or a circuit module) may include a filter and a switch. The filter operates as a transmit (TX) filter for a first band and as a receive (RX) filter for a second band. The filter may receive and filter an output radio frequency (RF) signal when operating as the TX filter and may receive and filter a received RF signal when operating as the RX filter. The switch is coupled to the filter and receives and passes the output RF signal to the filter or an input RF signal from the filter. The apparatus may further include a second filter operable as a TX filter for multiple bands and/or a third filter operable as an RX filter for multiple bands.
    Type: Grant
    Filed: February 26, 2013
    Date of Patent: August 16, 2016
    Assignee: QUALCOMM Incorporated
    Inventors: Rimon E Mansour, Haim M Weissman
  • Patent number: 9374121
    Abstract: Transceivers implemented with a combination of super-heterodyne and zero intermediate frequency (ZIF) topologies are disclosed. In an exemplary design, an apparatus includes a frequency conversion circuit and a local oscillator (LO) generator. The LO generator generates a first LO signal and a second LO signal. The frequency conversion circuit performs frequency conversion (i) between intermediate frequency (IF) and baseband, based on the first LO signal, for an IF signal and (ii) between radio frequency (RF) and baseband, based on the second LO signal, for an RF signal. The frequency conversion circuit may perform frequency downconversion (i) from IF to baseband for a super-heterodyne receiver and (ii) from RF to baseband for a ZIF receiver. Alternatively or additionally, the frequency conversion circuit may perform frequency upconversion (i) from baseband to IF for a super-heterodyne transmitter and (ii) from baseband to RF for a ZIF transmitter.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: June 21, 2016
    Assignee: QUALCOMM Incorporated
    Inventors: Haim M. Weissman, Yossef Tsfaty, Mazhareddin Taghivand, Avigdor Brillant, Tao Li, Raviv Lior
  • Patent number: 9312897
    Abstract: A DC offset filter for wide band beamforming receivers is disclosed. In an exemplary embodiment, an apparatus includes a first mixer configured to down-convert an RF wideband beamformed signal to generate a first baseband wideband beamformed signal, the RF wideband beamformed signal having a beam pattern selected from a plurality of beam patterns, and a notch filter configured to remove DC offset from the first baseband wideband beamformed signal independent of the beam pattern.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: April 12, 2016
    Assignee: QUALCOMM Incorporated
    Inventors: Gregory Steele, Yossi Tsfati, Haim M Weissman, Mazhareddin Taghivand
  • Patent number: 9312888
    Abstract: Techniques for supporting data transmission and reception on multiple bands for carrier aggregation are disclosed. In an exemplary design, an apparatus (e.g., a wireless device) includes first and second antenna interface circuits coupled to first and second antennas, respectively. The first antenna interface circuit includes a first transmit (TX) filter for a first band, which may be part of a first triplexer or duplexer. The first TX filter filters a first radio frequency (RF) signal prior to transmission via the first antenna. The second antenna interface circuit includes a second TX filter for a second band, which may be part of a second triplexer or duplexer. The second TX filter filters a second RF signal prior to transmission via the second antenna. The first and second RF signals may be transmitted simultaneously on the first and second bands for carrier aggregation.
    Type: Grant
    Filed: October 11, 2012
    Date of Patent: April 12, 2016
    Assignee: QUALCOMM Incorporated
    Inventors: Haim M Weissman, Rimon E Mansour, Christian Holenstein
  • Patent number: 8977216
    Abstract: A wireless device is described. The wireless device includes a tunable front end module. The tunable front end module includes a Tx microelectromechanical system bandpass filter. The tunable front end module also includes a first Rx microelectromechanical system bandpass filter. The wireless device also includes a power amplifier. The wireless device further includes a low noise amplifier.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: March 10, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Haim M. Weissman, Avigdor Brillant, David Pezo
  • Publication number: 20140242923
    Abstract: Shared filters used for both transmit and receive paths are disclosed. In an exemplary design, an apparatus (e.g., a wireless device, an integrated circuit, or a circuit module) may include a filter and a switch. The filter operates as a transmit (TX) filter for a first band and as a receive (RX) filter for a second band. The filter may (i) receive and filter an output radio frequency (RF) signal when operating as the TX filter and (ii) receive and filter a received RF signal when operating as the RX filter. The switch is coupled to the filter and receives and passes the output RF signal to the filter or an input RF signal from the filter. The apparatus may further include a second filter operable as a TX filter for multiple bands and/or a third filter operable as an RX filter for multiple bands.
    Type: Application
    Filed: February 26, 2013
    Publication date: August 28, 2014
    Applicant: QUALCOMM INCORPORATED
    Inventors: Rimon E. Mansour, Haim M. Weissman
  • Publication number: 20140133364
    Abstract: Techniques for supporting data transmission and reception on multiple bands for carrier aggregation are disclosed. In an exemplary design, an apparatus (e.g., a wireless device) includes first and second antenna interface circuits coupled to first and second antennas, respectively. The first antenna interface circuit includes a first quadplexer for first and second bands. The second antenna interface circuit includes a second quadplexer for the first and second bands. The first quadplexer may be a duplicate of the second quadplexer, which may simplify implementation. Each antenna interface circuit may further include a diplexer, a duplexer, a triplexer, another quadplexer, switches, etc. The first and second quadplexers may support data transmission and reception on two bands in a first band group. Other circuits in the first and second antenna interface circuits may support data transmission and/or reception on additional bands, possibly in one or more other band groups.
    Type: Application
    Filed: November 12, 2012
    Publication date: May 15, 2014
    Applicant: QUALCOMM INCORPORATED
    Inventors: Haim M Weissman, Rimon E Mansour
  • Publication number: 20140120851
    Abstract: A DC offset filter for wide band beamforming receivers is disclosed. In an exemplary embodiment, an apparatus includes a first mixer configured to down-convert an RF wideband beamformed signal to generate a first baseband wideband beamformed signal, the RF wideband beamformed signal having a beam pattern selected from a plurality of beam patterns, and a notch filter configured to remove DC offset from the first baseband wideband beamformed signal independent of the beam pattern.
    Type: Application
    Filed: October 31, 2012
    Publication date: May 1, 2014
    Applicant: QUALCOMM Incorporated
    Inventors: Gregory Steele, Yossi Tsfati, Haim M Weissman, Mazhareddin Taghivand
  • Publication number: 20140065985
    Abstract: Transceivers implemented with a combination of super-heterodyne and zero intermediate frequency (ZIF) topologies are disclosed. In an exemplary design, an apparatus includes a frequency conversion circuit and a local oscillator (LO) generator. The LO generator generates a first LO signal and a second LO signal. The frequency conversion circuit performs frequency conversion (i) between intermediate frequency (IF) and baseband, based on the first LO signal, for an IF signal and (ii) between radio frequency (RF) and baseband, based on the second LO signal, for an RF signal. The frequency conversion circuit may perform frequency downconversion (i) from IF to baseband for a super-heterodyne receiver and (ii) from RF to baseband for a ZIF receiver. Alternatively or additionally, the frequency conversion circuit may perform frequency upconversion (i) from baseband to IF for a super-heterodyne transmitter and (ii) from baseband to RF for a ZIF transmitter.
    Type: Application
    Filed: August 8, 2013
    Publication date: March 6, 2014
    Applicant: QUALCOMM Incorporated
    Inventors: Haim M. Weissman, Yossef Tsfaty, Mazhareddin Taghivand, Avigdor Brillant, Tao Li, Raviv Lior
  • Patent number: 8660208
    Abstract: Apparatus and methods for QAM modulation are disclosed using dual polar modulation. QAM modulation of a signal is accomplished by translating a QAM signal into two phasors having the same or constant amplitude and then phase shifting one of the phasor by 180 degrees for a differential load. The phasors are then polar modulated such that, when differentially combined in the load through summation or superposition, a QAM modulated symbol results. The use of constant amplitude phasors when power amplified for transmission of QAM modulated signals allows amplifiers to be operated in a saturation mode with greater efficiency than conventional amplifiers used in QAM modulation, which operate in a less efficient linear mode to effect amplitude modulation. Additionally, differential combining of the phasors affords relaxation of the turns of a transformer used in amplifying the phasors.
    Type: Grant
    Filed: October 19, 2010
    Date of Patent: February 25, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Avigdor Brillant, David Pezo, Haim M. Weissman, Jeremy M. Stein
  • Publication number: 20140003300
    Abstract: Techniques for supporting data transmission and reception on multiple bands for carrier aggregation are disclosed. In an exemplary design, an apparatus (e.g., a wireless device) includes first and second antenna interface circuits coupled to first and second antennas, respectively. The first antenna interface circuit includes a first transmit (TX) filter for a first band, which may be part of a first triplexer or duplexer. The first TX filter filters a first radio frequency (RF) signal prior to transmission via the first antenna. The second antenna interface circuit includes a second TX filter for a second band, which may be part of a second triplexer or duplexer. The second TX filter filters a second RF signal prior to transmission via the second antenna. The first and second RF signals may be transmitted simultaneously on the first and second bands for carrier aggregation.
    Type: Application
    Filed: October 11, 2012
    Publication date: January 2, 2014
    Applicant: QUALCOMM INCORPORATED
    Inventors: Haim M. Weissman, Rimon E. Mansour, Christian Holenstein
  • Patent number: 8559865
    Abstract: A method and apparatus for detecting a jammer comprising sampling an input signal; downconverting and sampling the input signal to generate a sampled downconverted (SD) input signal; comparing the sampled input signal to a wideband threshold THWB, and comparing the SD input signal to a narrowband threshold THNB; generating a wideband (WB) interrupt signal based on the comparison to the THWB, and generating a narrowband (NB) interrupt signal based on the comparison to the THNB; and generating a composite interrupt signal based on at least one of WB interrupt signal and NB interrupt signal. In one aspect, the apparatus comprises a wideband jammer detector for generating a WB interrupt signal to indicate a wideband jammer; a narrowband jammer detector for generating a NB interrupt signal to indicate a narrowband jammer; and interrupt logic for generating a composite interrupt signal based on one of WB interrupt signal and NB interrupt signal.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: October 15, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Haim M. Weissman, Avigdor Brillant, Susanta Sengupta
  • Publication number: 20130258948
    Abstract: Disclosed is a telephone system using a telephone network interface configured to couple a cellular telephone to a cable network. The interface coupled in this way enables transmission and reception of communication signals to and from a cellular telephone network over the cable network allowing communication of the cellular phone to a cellular network connected to the cable network, for instance. The telephone network interface is further configured to enable the interface to communicatively couple with the cellular telephone using packet-based communication, such as session interface protocol (SIP) packet based communication.
    Type: Application
    Filed: April 4, 2013
    Publication date: October 3, 2013
    Applicant: QUALCOMM Incorporated
    Inventor: Haim M. Weissman
  • Publication number: 20130244591
    Abstract: A wireless device is described. The wireless device includes a tunable front end module. The tunable front end module includes a Tx microelectromechanical system bandpass filter. The tunable front end module also includes a first Rx microelectromechanical system bandpass filter. The wireless device also includes a power amplifier. The wireless device further includes a low noise amplifier.
    Type: Application
    Filed: September 13, 2012
    Publication date: September 19, 2013
    Applicant: QUALCOMM INCORPORATED
    Inventors: Haim M. Weissman, Avigdor Brillant, David Pezo
  • Publication number: 20120243447
    Abstract: Certain aspects of the present disclosure provide a dual antenna distributed radio frequency front end (RFFE). RFFE topologies described herein may provide lower insertion loss (IL), reduced emission mask, decreased power consumption, and/or lower noise figure (NF) compared to conventional RFFE topologies. One example apparatus for wireless communications generally includes first and second power amplifiers (PAs) for amplifying signals for transmission, a transmit antenna for transmitting the amplified signals, a receive antenna for receiving other signals to be processed in a receive path, and a first transmit filter configured to filter the amplified signals from the first PA before amplification by the second PA. For certain aspects, a divided inter-stage filter providing overlapping frequency bands may be utilized. For certain aspects, the RFFE may support frequency-division duplexing (FDD)/TDD (time-division duplexing) coexistence, including support for FDD/TDD MIMO (multiple input multiple output).
    Type: Application
    Filed: March 19, 2012
    Publication date: September 27, 2012
    Applicant: QUAL COMM Incorporated
    Inventors: Haim M. Weissman, Avigdor Brillant, Rimon Mansour, Gene Fong
  • Publication number: 20110090988
    Abstract: Apparatus and methods for QAM modulation are disclosed using dual polar modulation. QAM modulation of a signal is accomplished by translating a QAM signal into two phasors having the same or constant amplitude and then phase shifting one of the phasor by 180 degrees for a differential load. The phasors are then polar modulated such that, when differentially combined in the load through summation or superposition, a QAM modulated symbol results. The use of constant amplitude phasors when power amplified for transmission of QAM modulated signals allows amplifiers to be operated in a saturation mode with greater efficiency than conventional amplifiers used in QAM modulation, which operate in a less efficient linear mode to effect amplitude modulation. Additionally, differential combining of the phasors affords relaxation of the turns of a transformer used in amplifying the phasors.
    Type: Application
    Filed: October 19, 2010
    Publication date: April 21, 2011
    Applicant: QUALCOMM INCORPORATED
    Inventors: Avigdor Brillant, David Pezo, Haim M. Weissman, Jeremy M. Stein
  • Publication number: 20110021168
    Abstract: A method and apparatus for toggling between a first mode and a second mode of a receiver based on an input signal level comprising comparing a gain state of the receiver to at least one gain state thresholds; determining the presence of a jammer; and switching a current mode of the receiver to a new mode based on the presence of the jammer and the comparison of the gain state. In one aspect, the apparatus comprises two LNAs operating in different modes; a jammer detector to provide a jammer interrupt bit to indicate the presence of a jammer; and an automatic gain control (AGC) circuit coupled to the jammer detector for receiving the jammer interrupt bit, wherein the AGC circuit selects between the two LNAs based on the jammer interrupt bit and a gain state comparison.
    Type: Application
    Filed: July 23, 2009
    Publication date: January 27, 2011
    Applicant: QUAL COMM Incorporated
    Inventors: Haim M. Weissman, Zoran Janosevic, Avigdor Brillant