Patents by Inventor Haiping Guo

Haiping Guo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11940299
    Abstract: This invention describes a magnetoresistive inertial sensor chip, comprising a substrate, a vibrating diaphragm, a magnetic field sensing magnetoresistor and at least one permanent magnet thin film. The vibrating diaphragm is located on one side surface of the substrate. The magnetic field sensing magnetoresistor and the permanent magnet thin film are set on the surface of the vibrating diaphragm displaced from the base of the substrate. A contact electrode is also arranged on the surface of the vibrating diaphragm away from the base of the substrate. The magnetic field sensing magnetoresistor is connected to the contact electrode through a lead. The substrate comprises a cavity formed through etching and either one or both of the magnetic field sensing magnetoresistors and the permanent magnet thin film are arranged in a vertical projection area of the cavity in the vibrating diaphragm portion.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: March 26, 2024
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: Bin Qi, Lixian Feng, Haiping Guo, Weifeng Shen, Songsheng Xue
  • Publication number: 20240097434
    Abstract: A method for detecting abnormal direct current voltage measurement in a modular multilevel converter high voltage direct current transmission system is provided. In the method, a valve group voltage at a detection pole is obtained, voltages at voltage measurement points at the detection pole are collected, and comparison and determination are performed based on the actual arrangement of the voltage measurement points, and then whether an abnormal measurement occurs at each of the voltage measurement points is determined.
    Type: Application
    Filed: May 18, 2022
    Publication date: March 21, 2024
    Applicant: ELECTRIC POWER RESEARCH INSTITUTE. CHINA SOUTHERN POWER GRID
    Inventors: Qinlei CHEN, Shuyong LI, Qi GUO, Libin HUANG, Xuehua LIN, Zhijiang LIU, Deyang CHEN, Chao LUO, Guanming ZENG, Mengjun LIAO, Lijun DENG, Liu CUI, Zhida HUANG, Haiping GUO, Tianyu GUO
  • Patent number: 11636889
    Abstract: An automatic magnetic flow recording device, comprises a multitude of coaxially disposed hard magnetic rotating wheels wherein the hard magnetic rotating wheels are circular, and rotate with respect to each other by a predetermined transmission ratio. Each hard magnetic rotating wheel has at least one corresponding biaxial magnetoresistive angle sensor. The biaxial magnetoresistive angle sensors measure the angular positions of the hard magnetic rotating wheels within the range of 0-360 degrees. The biaxial magnetoresistive angle sensors comprise two single-axis linear magnetoresistive sensors, wherein the single-axis linear magnetoresistive sensors are an X-axis magnetoresistive sensor or a Z-axis magnetoresistive sensor. The X-axis magnetoresistive sensor of the hard magnetic rotating wheel measures a magnetic field component parallel to the tangent of the circumference of the hard magnetic rotating wheel.
    Type: Grant
    Filed: February 2, 2016
    Date of Patent: April 25, 2023
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Haiping Guo, Xiaofeng Cheng, Zhimin Zhou
  • Publication number: 20220404171
    Abstract: Disclosed is linear displacement absolute position encoder used for measuring displacement of a tested apparatus. The linear displacement absolute position encoder comprises a base, a magnetoresistive sensor array, an encoding strip, and a back magnet. The encoding strip is fixed on the base and extends in the direction of a rail of the tested apparatus. The encoding strip is a magnetic material block having recess and protrusion for identifying encoding information of different positions. The magnetoresistive sensor array is arranged between the encoding strip and the back magnet in a non-contact manner. The back magnet is used for generating a non-uniform magnetic field around the encoding strip so as to magnetize the encoding strip. The magnetoresistive sensor array is used for acquiring the position encoding information of the encoding strip by detecting magnetic field information of the encoding strip. The encoder is low cost and can monitor large distances.
    Type: Application
    Filed: February 9, 2021
    Publication date: December 22, 2022
    Inventors: Haiping GUO, Weifeng SHEN, Songsheng XUE, Haochen LI
  • Publication number: 20220187389
    Abstract: The present disclosure discloses a magnetic isolator, including a substrate, a magnetic field generating unit, a magnetic field sensing unit, a shielding layer, and an isolation dielectric, where the magnetic field generating unit includes a current conductor, the current conductor is arranged to extend along a first direction on one side of the substrate, the magnetic field sensing unit and the current conductor are arranged on the same side of the substrate, the magnetic field sensing unit is located on a lateral side of the current conductor, and a distance between the current conductor and the magnetic field sensing unit is greater than 0 along a second direction, where the first direction is perpendicular to the second direction; an isolation dielectric is arranged between the current conductor and the magnetic field sensing unit; and an isolation dielectric is arranged within the distance between the current conductor and the magnetic field sensing unit along the second direction, thereby playing a role
    Type: Application
    Filed: March 12, 2020
    Publication date: June 16, 2022
    Inventors: Haiping GUO, Weifeng SHEN, Songsheng XUE
  • Publication number: 20220155105
    Abstract: This invention describes a magnetoresistive inertial sensor chip, comprising a substrate, a vibrating diaphragm, a magnetic field sensing magnetoresistor and at least one permanent magnet thin film. The vibrating diaphragm is located on one side surface of the substrate. The magnetic field sensing magnetoresistor and the permanent magnet thin film are set on the surface of the vibrating diaphragm displaced from the base of the substrate. A contact electrode is also arranged on the surface of the vibrating diaphragm away from the base of the substrate. The magnetic field sensing magnetoresistor is connected to the contact electrode through a lead. The substrate comprises a cavity formed through etching and either one or both of the magnetic field sensing magnetoresistors and the permanent magnet thin film are arranged in a vertical projection area of the cavity in the vibrating diaphragm portion.
    Type: Application
    Filed: March 27, 2020
    Publication date: May 19, 2022
    Inventors: Bin QI, Lixian FENG, Haiping GUO, Weifeng SHEN, Songsheng XUE
  • Patent number: 10777031
    Abstract: A coin detection system comprises an excitation coil, a radial magnetic gradiometer, an axial magnetic gradiometer, a signal excitation source, a drive circuit, an analog front-end circuit and a processor. After the excitation coil is excited by the signal excitation source and the drive circuit, the excitation coil generates an excitation magnetic field parallel to the axial direction of a coin, and under the influence of the excitation magnetic field, the coin generates an induced magnetic field through eddy currents induced in the coin; the radial magnetic gradiometer and the axial magnetic gradiometer detect the magnetic field components of the magnetic field in the radial direction and the axial direction of the coin, and the detected signal is transmitted to the analog front-end circuit for amplification; the processor processes and then outputs the amplified signal transmitted by the analog front-end circuit, and the material, design, denomination, etc.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: September 15, 2020
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Haiping Guo
  • Patent number: 10277992
    Abstract: This invention discloses a TMR near-field magnetic communication system, which is used for detecting AC and DC magnetic fields generated by a near-field magnetic communication system, and inputting AC and DC magnetic field signal to an audio electroacoustic taking the same as input signals thereof. The audio electroacoustic device comprises a hearing aid, an earphone of a home entertainment system, a public hearing loop system with an embedded hearing device, etc. The TMR near-field magnetic communication system comprises one or more TMR sensor bridges for detecting AC and DC magnetic field signals, an analog-signal circuit containing a filter which is used for separating components of AC and DC signals output by a TMR sensor, an amplifier which is used for amplifying an AC electrical signal, and an analog output used for transmitting the AC electrical signal to the audio electroacoustic device.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: April 30, 2019
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Haiping Guo, Songsheng Xue
  • Patent number: 10187731
    Abstract: A magnetoresistive audio pickup comprises an audio detection circuit. The audio detection circuit comprises at least one linear magnetoresistive sensor, a coupling capacitance, an AC amplifier, and a signal processing circuit comprising an additional amplifier. The linear magnetoresistive sensor comprises at least one single-axis linear magnetoresistive sensor unit. The linear magnetoresistive sensors are placed in a measurement plane above a speaker's voice coil, the signal output end of each single-axis linear magnetoresistive sensor unit is capacitively coupled to the AC amplifier which provides AC signals through electrical connection to the amplifier, these signals are combined within the signal processing unit into an audio signal, and the audio signal is output from the circuit; each single-axis linear sensor unit is located in the linear response area of the measurement plane.
    Type: Grant
    Filed: March 19, 2015
    Date of Patent: January 22, 2019
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: Zhimin Zhou, James Geza Deak, Haiping Guo
  • Patent number: 9957967
    Abstract: A direct-current fan control chip comprises a magnetoresistive sensor, a controller, a driver and a substrate. The magnetoresistive sensor, the controller and the driver are integrated on the substrate. The sensing direction of the magnetoresistive sensor is perpendicular to or parallel to the surface of the direct-current fan control chip. The magnetoresistive sensor provides the controller with a rotor position signal, a rotor speed signal, and rotor a rotation direction signal for the controller. The controller outputs a control signal to the driver according to the received signals. After receiving the control signals, the driver outputs a drive signal. This control chip has the advantages of good temperature stability, good frequency response and so on.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: May 1, 2018
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: Haiping Guo, Dan Li, Songsheng Xue, James Geza Deak
  • Publication number: 20180033474
    Abstract: An automatic magnetic flow recording device, comprises a multitude of coaxially disposed hard magnetic rotating wheels wherein the hard magnetic rotating wheels are circular, and rotate with respect to each other by a predetermined transmission ratio. Each hard magnetic rotating wheel has at least one corresponding biaxial magnetoresistive angle sensor. The biaxial magnetoresistive angle sensors measure the angular positions of the hard magnetic rotating wheels within the range of 0-360 degrees. The biaxial magnetoresistive angle sensors comprise two single-axis linear magnetoresistive sensors, wherein the single-axis linear magnetoresistive sensors are an X-axis magnetoresistive sensor or a Z-axis magnetoresistive sensor. The X-axis magnetoresistive sensor of the hard magnetic rotating wheel measures a magnetic field component parallel to the tangent of the circumference of the hard magnetic rotating wheel.
    Type: Application
    Filed: February 2, 2016
    Publication date: February 1, 2018
    Inventors: James Geza Deak, Haiping Guo, Xiaofeng Cheng, Zhimin Zhou
  • Publication number: 20170374472
    Abstract: A magnetoresistive audio pickup comprises an audio detection circuit. The audio detection circuit comprises at least one linear magnetoresistive sensor, a coupling capacitance, an AC amplifier, and a signal processing circuit comprising an additional amplifier. The linear magnetoresistive sensor comprises at least one single-axis linear magnetoresistive sensor unit. The linear magnetoresistive sensors are placed in a measurement plane above a speaker's voice coil, the signal output end of each single-axis linear magnetoresistive sensor unit is capacitively coupled to the AC amplifier which provides AC signals through electrical connection to the amplifier, these signals are combined within the signal processing unit into an audio signal, and the audio signal is output from the circuit; each single-axis linear sensor unit is located in the linear response area of the measurement plane.
    Type: Application
    Filed: March 19, 2015
    Publication date: December 28, 2017
    Inventors: Zhimin ZHOU, James Geza DEAK, Haiping GUO
  • Patent number: 9804235
    Abstract: A single magnetoresistor TMR magnetic field sensor chip and magnetic currency detector head; the single magnetoresistor TMR magnetic field sensor chip is installed above a magnetic excitation element; the sensing direction of the chip is parallel to the surface of the chip, and the direction of the magnetic excitation field generated at the chip by the magnetic excitation element is perpendicular to the surface of the chip; the chip comprises a substrate, a magnetic biasing structure deposited on the substrate, a magnetoresistive element, and an input/output terminal; the magnetoresistive element consists of MTJs; the sensing directions of the magnetoresistive element and the MTJs are the same as the sensing direction of the chip; and the direction of a bias magnetic field generated on the chip by the magnetic biasing structure is perpendicular to the sensing direction of the chip. The chip features high sensitivity, high signal-to-noise ratio, small size, high temperature stability and high reliability.
    Type: Grant
    Filed: July 25, 2014
    Date of Patent: October 31, 2017
    Assignee: MultiDimension Technology Co., Ltd.
    Inventors: James Geza Deak, Haiping Guo
  • Publication number: 20170215012
    Abstract: This invention discloses a TMR near-field magnetic communication system, which is used for detecting AC and DC magnetic fields generated by a near-field magnetic communication system, and inputting AC and DC magnetic field signal to an audio electroacoustic taking the same as input signals thereof. The audio electroacoustic device comprises a hearing aid, an earphone of a home entertainment system, a public hearing loop system with an embedded hearing device, etc. The TMR near-field magnetic communication system comprises one or more TMR sensor bridges for detecting AC and DC magnetic field signals, an analog-signal circuit containing a filter which is used for separating components of AC and DC signals output by a TMR sensor, an amplifier which is used for amplifying an AC electrical signal, and an analog output used for transmitting the AC electrical signal to the audio electroacoustic device.
    Type: Application
    Filed: July 7, 2015
    Publication date: July 27, 2017
    Inventors: James Geza Deak, Haiping Guo, Songsheng Xue
  • Publication number: 20170193725
    Abstract: A coin detection system comprises an excitation coil, a radial magnetic gradiometer, an axial magnetic gradiometer, a signal excitation source, a drive circuit, an analog front-end circuit and a processor. After the excitation coil is excited by the signal excitation source and the drive circuit, the excitation coil generates an excitation magnetic field parallel to the axial direction of a coin, and under the influence of the excitation magnetic field, the coin generates an induced magnetic field through eddy currents induced in the coin; the radial magnetic gradiometer and the axial magnetic gradiometer detect the magnetic field components of the magnetic field in the radial direction and the axial direction of the coin, and the detected signal is transmitted to the analog front-end circuit for amplification; the processor processes and then outputs the amplified signal transmitted by the analog front-end circuit, and the material, design, denomination, etc.
    Type: Application
    Filed: June 12, 2015
    Publication date: July 6, 2017
    Inventors: James Geza Deak, Haiping Guo
  • Publication number: 20170037859
    Abstract: A direct-current fan control chip comprises a magnetoresistive sensor, a controller, a driver and a substrate. The magnetoresistive sensor, the controller and the driver are integrated on the substrate. The sensing direction of the magnetoresistive sensor is perpendicular to or parallel to the surface of the direct-current fan control chip. The magnetoresistive sensor provides the controller with a rotor position signal, a rotor speed signal, and rotor a rotation direction signal for the controller. The controller outputs a control signal to the driver according to the received signals. After receiving the control signals, the driver outputs a drive signal. This control chip has the advantages of good temperature stability, good frequency response and so on.
    Type: Application
    Filed: April 13, 2015
    Publication date: February 9, 2017
    Inventors: Haiping Guo, Dan Li, Songsheng Xue, James Geza Deak
  • Publication number: 20160169987
    Abstract: A single magnetoresistor TMR magnetic field sensor chip and magnetic currency detector head; the single magnetoresistor TMR magnetic field sensor chip is installed above a magnetic excitation element; the sensing direction of the chip is parallel to the surface of the chip, and the direction of the magnetic excitation field generated at the chip by the magnetic excitation element is perpendicular to the surface of the chip; the chip comprises a substrate, a magnetic biasing structure deposited on the substrate, a magnetoresistive element, and an input/output terminal; the magnetoresistive element consists of MTJs; the sensing directions of the magnetoresistive element and the MTJs are the same as the sensing direction of the chip; and the direction of a bias magnetic field generated on the chip by the magnetic biasing structure is perpendicular to the sensing direction of the chip. The chip features high sensitivity, high signal-to-noise ratio, small size, high temperature stability and high reliability.
    Type: Application
    Filed: July 25, 2014
    Publication date: June 16, 2016
    Applicant: Multimension Technology Co., Ltd.
    Inventors: James Geza Deak, Haiping Guo