Patents by Inventor Haiyang Mao

Haiyang Mao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9222837
    Abstract: This invention involves structure and fabrication method of a black silicon-based MEMS thermopile IR detector. The high-performance black silicon-based MEMS thermopile IR detector includes a substrate; a releasing barrier band on the substrate; a thermal isolation cavity constructed by the releasing barrier band; a black silicon-based IR absorber located right above the thermal isolation cavity; a number of thermocouples are set around the lateral sides of the black silicon-based IR absorber. The thermopiles around the black silicon-based IR absorber are electrically connected in series thus to form a thermopile. Metallic electrodes are located beside the electrically-connected thermopiles for signal output. The cold junctions of the thermopile are connected to the substrate through the first thermal-conductive-electrical-isolated structures, the heat conductor is located at the lateral sides of the thermal isolation cavity.
    Type: Grant
    Filed: January 21, 2013
    Date of Patent: December 29, 2015
    Assignee: JIANGSU R&D CENTER FOR INTERNET OF THINGS
    Inventors: Haiyang Mao, Wen Ou
  • Patent number: 9117949
    Abstract: The invention involves structure and fabrication method of a high performance IR detector. The structure comprises a substrate; a releasing barrier band on the substrate; a thermal isolation chamber constructed by the releasing barrier band; a black silicon-based IR absorber located right above the thermal isolation chamber and the black silicon-based IR absorber is set on the releasing barrier band; a number of thermocouples are set around the lateral sides of the black silicon-based IR absorber. The thermopiles around the black silicon-based IR absorber are electrically connected in series. The cold junctions of the thermopile are connected to the substrate through the first thermal-conductive-electrical-isolated structures as well as the heat conductor under the first thermal-conductive-electrical-isolated structures.
    Type: Grant
    Filed: January 21, 2013
    Date of Patent: August 25, 2015
    Assignee: JIANGSU R&D CENTER FOR INTERNET OF THINGS
    Inventors: Haiyang Mao, Wen Ou
  • Publication number: 20150168221
    Abstract: This invention involves structure and fabrication method of a black silicon-based MEMS thermopile IR detector. The high-performance black silicon-based MEMS thermopile IR detector includes a substrate; a releasing barrier band on the substrate; a thermal isolation cavity constructed by the releasing barrier band; a black silicon-based IR absorber located right above the thermal isolation cavity; a number of thermocouples are set around the lateral sides of the black silicon-based IR absorber. The thermopiles around the black silicon-based IR absorber are electrically connected in series thus to form a thermopile. Metallic electrodes are located beside the electrically-connected thermopiles for signal output. The cold junctions of the thermopile are connected to the substrate through the first thermal-conductive-electrical-isolated structures, the heat conductor is located at the lateral sides of the thermal isolation cavity.
    Type: Application
    Filed: January 21, 2013
    Publication date: June 18, 2015
    Inventors: Haiyang Mao, Wen Ou
  • Publication number: 20150137304
    Abstract: The invention involves structure and fabrication method of a high performance IR detector. The structure comprises a substrate; a releasing barrier band on the substrate; a thermal isolation chamber constructed by the releasing barrier band; a black silicon-based IR absorber located right above the thermal isolation chamber and the black silicon-based IR absorber is set on the releasing barrier band; a number of thermocouples are set around the lateral sides of the black silicon-based IR absorber. The thermopiles around the black silicon-based IR absorber are electrically connected in series. The cold junctions of the thermopile are connected to the substrate through the first thermal-conductive-electrical-isolated structures as well as the heat conductor under the first thermal-conductive-electrical-isolated structures.
    Type: Application
    Filed: January 21, 2013
    Publication date: May 21, 2015
    Inventors: Haiyang Mao, Wen Ou