Patents by Inventor Haiyou Wang

Haiyou Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200114187
    Abstract: The present disclosure provides azeotrope or azeotrope-like compositions including trifluoroiodomethane (CF3I) and 1,1,1,2,2,3,3-heptafluoropropane (HFC-227 ca), and a method of forming an azeotrope or azeotrope-like composition comprising the step of combining 1,1,1,2,2,3,3-heptafluoropropane (HFC-227ca) and trifluoroiodomethane (CF3I) to form an azeotrope or azeotrope-like comprising 1,1,1,2,2,3,3-heptafluoropropane (HFC-227ca) and trifluoroiodomethane (CF3I) having a boiling point of about ?24.46° C. ±0.30° C. at a pressure of about 14.40 psia±0.30 psia.
    Type: Application
    Filed: September 16, 2019
    Publication date: April 16, 2020
    Inventors: Christian Jungong, Daniel C. Merkel, Haiyou Wang, Hang T. Pham, Ryan J. Hulse
  • Publication number: 20200115305
    Abstract: The present disclosure provides azeotrope or azeotrope-like compositions including trifluoroiodomethane (CF3I) and hexafluoroacetone (HFA), and a method of forming an azeotrope or azeotrope-like composition comprising the step of combining hexafluoroacetone (HFA) and trifluoroiodomethane (CF3I) to form an azeotrope or azeotrope-like comprising hexafluoroacetone (HFA) and trifluoroiodomethane (CF3I) having a boiling point of about ?29.84° C.±0.30° C. at a pressure of about 14.40 psia±0.30 psia.
    Type: Application
    Filed: September 16, 2019
    Publication date: April 16, 2020
    Inventors: Christian Jungong, Haiyou Wang, Daniel C. Merkel, Hang T. Pham, Ryan J. Hulse
  • Publication number: 20200071247
    Abstract: The present invention relates, at least in part, to a process for making chlorotrifluoroethylene (CFO-1113) from 1,2-dichloro-1,1,2-trifluoroethane (HCFC-123a). In certain aspects, the process includes dehydrochlorinating 1,2-dichloro-1,1,2-trifluoroethane (HCFC-123a) in the presence of a catalyst selected from the group consisting of (i) one or more metal halides; (ii) one or more halogenated metal oxides; (iii) one or more zero-valent metals or metal alloys; (iv) combinations thereof.
    Type: Application
    Filed: September 10, 2019
    Publication date: March 5, 2020
    Inventors: Haiyou Wang, Hsueh Sung Tung
  • Patent number: 10577295
    Abstract: The present invention relates, at least in part, to a process for making chlorotrifluoroethylene (CFO-1113) from 1,2-dichloro-1,1,2-trifluoroethane (HCFC-123a). In certain aspects, the process includes dehydrochlorinating 1,2-dichloro-1,1,2-trifluoroethane (HCFC-123a) in the presence of a catalyst selected from the group consisting of (i) one or more metal halides; (ii) one or more halogenated metal oxides; (iii) one or more zero-valent metals or metal alloys; (iv) combinations thereof.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: March 3, 2020
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Haiyou Wang, Hsueh Sung Tung
  • Publication number: 20200062679
    Abstract: The present disclosure provides a process for producing trifluoroiodomethane, the process comprising providing a reactant stream comprising hydrogen iodide and at least one trifluoroacetyl halide selected from the group consisting of trifluoroacetyl chloride, trifluoroacetyl fluoride, trifluoroacetyl bromide, and combinations thereof, reacting the reactant stream in the presence of a first catalyst at a first reaction temperature from about 25° C. to about 400° C. to produce an intermediate product stream comprising trifluoroacetyl iodide, and reacting the intermediate product stream in the presence of a second catalyst at a second reaction temperature from about 200° C. to about 600° C. to produce a final product stream comprising the trifluoroiodomethane.
    Type: Application
    Filed: August 23, 2019
    Publication date: February 27, 2020
    Inventors: Haridasan K. Nair, Glenn Matthies, Rajiv Ratna Singh, Terris Yang, Haiyou Wang, Ryan J. Hulse, Rajiv Banavali
  • Publication number: 20200055804
    Abstract: The invention relates to a process for reducing the concentration of a fluorinated alkyne impurity, such as 3,3,3-trifluoropropyne (TFPY), in 2,3,3,3-tetrafluoropropene (HFO-1234yf) which comprises contacting such a mixture with a caustic material, such as sodium hydroxide (NaOH), under conditions effective to reduce the concentration of the fluorinated alkyne impurity, including in some practices reducing the concentration by at least about 50%.
    Type: Application
    Filed: November 2, 2017
    Publication date: February 20, 2020
    Inventors: Haiyou Wang, Hsueh Sung Tung, Willie Josue Perez, Yian Zhai, Ralph John Borowski, Fang Huang Tu, Lucas Peter Labuda, John L. Welch
  • Patent number: 10464869
    Abstract: Disclosed are processes for producing halogenated olefins, and preferably tetrafluorinated propene(s), from one or more alkanes having both fluorine substituents and non-fluorine substituents, preferably with a high degree of conversion and selectivity. Preferably the process comprises the use of a catalyzed reaction in which the catalyst is selected from the group consisting of activated carbons halogenated mono- and di-valent metal oxides, mono- and di-valent Lewis acid metal halides, zero-valent metals, and combinations of these.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: November 5, 2019
    Assignee: Honeywell International Inc.
    Inventors: Haiyou Wang, Hsueh Sung Tung, Sudip Mukhopadhyay
  • Patent number: 10450248
    Abstract: A method for producing 1,3,3,3-tetrafluoropropene (HFO-1234ze, or 1234ze) from 1-chloro-3,3,3-trifluoropropene (HCFO-1233zd, or 1233zd). In one embodiment, HFO-1233zd is subjected to a disproportionation reaction in the presence of a catalyst at an elevated temperature to produce HFO-1234ze as well as 3,3-dichloro-1,1-difluoropropene (HCFO-1232zc). The catalyst may be at least one of a chromium oxyfluoride catalyst, a chromium oxide catalyst, or a metal fluoride catalyst. The reaction may be conducted in the vapor phase at a temperature between 100° C. and 450° C. Advantageously, in the present method, substantially no hydrogen fluoride (HF) is used as a reactant, and substantially no HF is produced as a product.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: October 22, 2019
    Assignee: Honeywell International Inc.
    Inventors: Christian Jungong, Daniel C. Merkel, Haiyou Wang
  • Patent number: 10427999
    Abstract: The present invention discloses a manufacturing process to produce high purity 1234yf from 245eb, which preferably includes the removal of impurities present in 245eb raw material, the dehydrofluorination of 245eb, and the removal of impurities present in final crude product. The disclosed manufacturing process allows the production of a 1234yf product with lower the levels of 1225ye and/or trifluoropropene, preferably in amounts of less than about 500, and 50 ppm, respectively.
    Type: Grant
    Filed: March 6, 2017
    Date of Patent: October 1, 2019
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Haiyou Wang, Hsueh Sung Tung, Rajiv R. Singh, Ian Shankland
  • Patent number: 10414705
    Abstract: The present invention discloses a manufacturing process to produce high purity 1234yf from 245eb, which preferably includes the removal of impurities present in 245eb raw material, the dehydrofluorination of 245eb, and the removal of impurities present in final crude product. The disclosed manufacturing process allows the production of a 1234yf product with lower the levels of 1225ye and/or trifluoropropene, preferably in amounts of less than about 500, and 50 ppm, respectively.
    Type: Grant
    Filed: January 31, 2017
    Date of Patent: September 17, 2019
    Assignee: HONEYWELL INTERNATIONAL INC.
    Inventors: Haiyou Wang, Hsueh Sung Tung, Rajiv R. Singh, Ian Shankland
  • Patent number: 10351494
    Abstract: The present disclosure provides various manufacturing processes for the production of 2,3,3,3-tetrafluoropropene (HFO-1234yf or 1234yf). Such methods may allow for the improved yields, more economical processes, and waste reduction in the production of 1234yf and subsequent processes.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: July 16, 2019
    Assignee: Honeywell International Inc.
    Inventors: Haiyou Wang, Terris Yang, Daniel C. Merkel, Haluk Kopkalli, Gustavo Cerri, Yuon Chiu, Richard D. Horwath
  • Publication number: 20190210945
    Abstract: The present disclosure provides various compositions including 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) and at least one impurity comprising 2,3,3,3-tetrafluoropropene (HFO-1234yf), pentafluoropropene (HFO-1225ye isomer(s)), 1,3,3,3-tetrafluoropropene (HFO-1234ze isomer(s)), 1,1,1,2,2-pentafluoropropane (HFC-245cb), 1,1,1,2-tetrafluoropropane (HFC-254eb), 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf), 1-chloro-1,1,2,2-tetrafluoropropane (HCFC-244cc), chlorotetrafluoropropene (HCFO-1224 isomers), E-1-chloro-3,3,3-trifluoropropene (HCFO-1233zdE), 1,1,1,3,3-pentafluoropropane (HFC-245fa), heptafluorobutane (HFC-347 isomers), 2-chloro-1,1,1,3,3-pentafluoropropane (HFC-235da), 3-chloro-1,1,1,2-tetrafluoropropane (HCFC-244eb), 3-chloro-3,3,3-trifluoropropane (HCFC-253fb), dichlorotrifluoropropene (HCFO-1223 isomers), 2,3-dichloro-1,1,1,2-tetrafluoropropane (HCFC-234bb), 2,2-dichloro-1,1,1-trifluoropropane (HCFC-243db), chlorohexafluorobutene (HFO-1326 isomers), hexafluorobutene (HFO-1336 isomers), pentafluo
    Type: Application
    Filed: February 19, 2019
    Publication date: July 11, 2019
    Inventor: Haiyou Wang
  • Publication number: 20190210944
    Abstract: The present disclosure provides various manufacturing processes for the production of 2,3,3,3-tetrafluoropropene (HFO-1234yf or 1234yf). Such methods may allow for the improved yields, more economical processes, and waste reduction in the production of 1234yf and subsequent processes.
    Type: Application
    Filed: January 8, 2018
    Publication date: July 11, 2019
    Inventors: Haiyou Wang, Terris Yang, Daniel C. Merkel, Haluk Kopkalli, Gustavo Cerri, Yuon Chiu, Richard D. Horwath
  • Patent number: 10343962
    Abstract: The present invention relates, in part, to the discovery that, during the fluorination of certain fluoroolefin starting reagents, particularly, 1,1,2,3-tetrachloropropene (1230xa), oligomerization/polymerization of such starting reagents reduces the conversion process and leads to increased catalyst deactivation. The present invention also illustrates that providing one or more organic co-feed to the fluooolefin starting stream reduces such oligomerization/polymerization and improves catalystic stability.
    Type: Grant
    Filed: March 21, 2017
    Date of Patent: July 9, 2019
    Assignee: Honeywell International Inc.
    Inventors: Selma Bektesevic, Daniel C. Merkel, Mario Joseph Nappa, Xuehui Sun, Hsueh Sung Tung, Haiyou Wang
  • Publication number: 20190152882
    Abstract: A method for producing 1,3,3,3-tetrafluoropropene (HFO-1234ze, or 1234ze) from 1-chloro-3,3,3-trifluoropopene (HCFO-1233zd, or 1233zd). In one embodiment, HFO-1233zd is subjected to a disproportionation reaction in the presence of a catalyst at an elevated temperature to produce HFO-1234ze as well as 3,3-dichloro-1,1-difluoropropene (HCFO-1232zc). The catalyst may be at least one of a chromium oxyfluoride catalyst, a chromium oxide catalyst, or a metal fluoride catalyst. The reaction may be conducted in the vapor phase at a temperature between 100° C. and 450° C. Advantageously, in the present method, substantially no hydrogen fluoride (HF) is used as a reactant, and substantially no HF is produced as a product.
    Type: Application
    Filed: November 1, 2018
    Publication date: May 23, 2019
    Inventors: Christian Jungong, Daniel C. Merkel, Haiyou Wang
  • Patent number: 10246389
    Abstract: The present disclosure provides various compositions including 2-chloro-1,1,1,2-tetrafluoropropane (HCFC-244bb) and at least one impurity comprising 2,3,3,3-tetrafluoropropene(HFO-1234yf), pentafluoropropene (HFO-1225ye isomer(s)), 1,3,3,3-tetrafluoropropene (HFO-1234ze isomer(s)), 1,1,1,2,2-pentafluoropropane (HFC-245cb), 1,1,1,2-tetrafluoropropane (HFC-254eb), 2-chloro-3,3,3-trifluoropropene (HCFO-1233xf), 1-chloro-1,1,2,2-tetrafluoropropane (HCFC-244cc), chlorotetrafluoropropene (HCFO-1224 isomers), E-1-chloro-3,3,3-trifluoropropene (HCFO-1233zdE), 1,1,1,3,3-pentafluoropropane (HFC-245fa), heptafluorobutane (HFC-347 isomers), 2-chloro-1,1,1,3,3-pentafluoropropane (HFC-235da), 3-chloro-1,1,1,2-tetrafluoropropane (HCFC-244eb), 3-chloro-3,3,3-trifluoropropane (HCFC-253fb), dichlorotrifluoropropene (HCFO-1223 isomers), 2,3-dichloro-1,1,1,2-tetrafluoropropane (HCFC-234bb), 2,2-dichloro-1,1,1-trifluoropropane (HCFC-243db), chlorohexafluorobutene (HFO-1326 isomers), hexafluorobutene (HFO-1336 isomers), pentafluor
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: April 2, 2019
    Assignee: Honeywell International Inc.
    Inventor: Haiyou Wang
  • Publication number: 20190084906
    Abstract: The present invention relates, in part, to the discovery that, during the fluorination of certain fluoroolefin starting reagents, oligomerization/polymerization of such reagents reduces the conversion process and leads to increased catalyst deactivation. The present invention also illustrates that vaporizing such starting reagents in the presence of one or more organic co-feed reduces such oligomerization/polymerization and improves catalytic stability.
    Type: Application
    Filed: November 20, 2018
    Publication date: March 21, 2019
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Haiyou WANG, Hsueh Sung TUNG, Selma BEKTESEVIC, Daniel C. MERKEL, Haluk KOPKALLI, Yuon CHIU
  • Publication number: 20190084905
    Abstract: The present disclosure relates to a process for preparing 2-chloro-3,3,3-trifluorpropene comprising: (a) hydrogenating 1,2-dichloro-3,3,3-trifluoropropene in the presence of a hydrogenation catalyst to form 1,1,1-trifluoro-2,3-dichloropropane and (b) dehydrochlorinating 1,1,1-trifluoro-2,3-dichloropropane in the presence of a dehydrochlorination catalyst to form 2-chloro-3,3,3-trifluorpropene.
    Type: Application
    Filed: September 16, 2016
    Publication date: March 21, 2019
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Haiyou WANG, Hsueh Sung Tung
  • Patent number: 10233137
    Abstract: A method for removing unsaturated halogen impurities from 2,3,3,3-tetrafluoropropene (HFO-1234yf) of the type that may otherwise be difficult to separate from HFO-1234yf due to the impurities having boiling points which are close to that of HFO-1234yf and/or the potential of one or more of the impurities to form azeotropic mixtures with HFO-1234yf. A HFO-1234yf stream including unsaturated halogenated impurities is first passed through a caustic scrubber and is then passed through an acid scrubber. In the caustic scrubber and acidic scrubber, undesirable impurities are removed, in particular, 3,3,3-trifluoropropene (1243zf), 1-chloro-1-fluoroethylene (1131a), vinyl chloride (1140), and/or 1-chloro-2-fluoroethylene (1131).
    Type: Grant
    Filed: October 13, 2017
    Date of Patent: March 19, 2019
    Assignee: Honeywell International Inc.
    Inventors: Haiyou Wang, Terris Yang
  • Patent number: 10207972
    Abstract: Provided are azeotropic or azeotrope-like mixtures of 1,3,3,3-tetrachloroprop-1-ene (HCO-1230zd) and hydrogen fluoride. Such compositions are useful as a feed stock in the production of HFC245fa and HCFO1233zd.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: February 19, 2019
    Assignee: Honeywell international Inc.
    Inventors: Daniel C. Merkel, Konstantin A. Pokrovski, Hsueh Sung Tung, Haiyou Wang, Ryan Hulse