Patents by Inventor Hamed Sadeghian Marnani

Hamed Sadeghian Marnani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10466272
    Abstract: Thermal probe (10) for a scanning thermal microscope (100), use, and process of manufacturing. The thermal probe (10) comprises a single-material (M1) thermal conducting body (12) consisting of a probe frame (14) ending in a probe tip (11). A bi-material (M1,M2) cantilever strip (13) is connected to the probe frame (14) in thermal communication with the probe tip (11). The cantilever strip (13) in unbended state lies in-plane (X,Z) with the probe tip (11). The cantilever strip (13) comprises layers of material (M1,M2) having different coefficients of thermal expansion configured to bend the cantilever strip (13) with respect to the single-material thermal conducting body (12) as a function of the heat exchange (H) between the probe tip (11) and the microscopic structure (2) for measuring heat exchange (H) with a sample interface (1) by means of measuring the bending of the cantilever strip (13).
    Type: Grant
    Filed: June 14, 2016
    Date of Patent: November 5, 2019
    Assignee: NEDERLANDSE ORGANISATIE VOOR TOEGEPAST-NATUURWETENSCHAPPELIJK ONDERZOEK TNO
    Inventors: Hamed Sadeghian Marnani, Roy Jacobus Franciscus Bijster
  • Publication number: 20190317127
    Abstract: A scanning probe microscopy system (1) comprises a probe (2), a scanning head (11) having a first probe holder (21), a probe exchange manipulator (12) having a second probe holder (22), a force generating system (31, 32), and a force control system (41, 42) for controlling the force generating system to provide a resultant force (72) acting on the probe. Said resultant force comprises gas pressure force components and/or electrostatic force components. During probe-demounting or probe-mounting the probe is moving (52) from the first probe holder (21) towards the second probe holder (22), or vice versa, respectively, while neither the first probe holder nor the second probe holder is contacting the probe. Said movement of the probe is driven by said resultant force. The invention allows for automatically mounting and demounting of probes with high speed and with high accuracy.
    Type: Application
    Filed: November 28, 2017
    Publication date: October 17, 2019
    Applicant: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Hamed SADEGHIAN MARNANI, Anton Adriaan BIJNAGTE, Albert DEKKER
  • Publication number: 20190310284
    Abstract: Method of determining an overlay error between device layers of a multilayer semiconductor device using an atomic force microscopy system, wherein the semiconductor device comprises a stack of device layers comprising a first patterned layer and a second patterned layer, and wherein the atomic force microscopy system comprises a probe tip, wherein the method comprises: moving the probe tip and the semiconductor device relative to each other for scanning of the surface; and monitoring motion of the probe tip with tip position detector during said scanning for obtaining an output signal; during said scanning, applying a first acoustic input signal to at least one of the probe or the semiconductor device; analyzing the output signal for mapping at least subsurface nanostructures below the surface of the semiconductor device; and determining the overlay error between the first patterned layer and the second patterned layer based on the analysis.
    Type: Application
    Filed: June 16, 2017
    Publication date: October 10, 2019
    Inventors: Maarten Hubertus van Es, Hamed Sadeghian Marnani
  • Publication number: 20190250524
    Abstract: An alignment system (100) and method for positioning and/or keeping a first object (1) at a controlled distanced (D1) with respect to a second object (2). An object stage (11) is configured to hold a surface (1a) of the first object (1) at a distance (D1) over a surface (2a) of the second object (2). A sensor device (31) comprising a probe tip (31a) is connected at a predetermined probe level distance (Dp) relative to the surface (1a) of the first object (1). The probe tip (31a) is configured to perform an atomic force measurement (AFM) of a force (F1) exerted via the probe tip (31a) on a surface (2a) of the second object (2). A controller (80) is configured to control an object stage actuator (21) as a function of the probe level distance (Dp) and the measured force (F1) to maintain the controlled distanced (D1).
    Type: Application
    Filed: November 10, 2016
    Publication date: August 15, 2019
    Inventor: Hamed Sadeghian Marnani
  • Publication number: 20190227097
    Abstract: The present document relates to a method of performing defect detection on a self-assembled monolayer of a semiconductor element or semi-manufactured semiconductor element, using an atomic force microscopy system. The system comprises a probe with a probe tip, and is configured for positioning the probe tip relative to the element for enabling contact between the probe tip and a surface of the element. The system comprises a sensor providing an output signal indicative of a position of the probe tip. The method comprises: scanning the surface with the probe tip; applying an acoustic vibration signal to the element; obtaining the output signal indicative of the position of the probe tip; monitoring probe tip motion during said scanning for mapping the surface of the semiconductor element, and using a fraction of the output signal for mapping contact stiffness indicative of a binding strength.
    Type: Application
    Filed: August 31, 2017
    Publication date: July 25, 2019
    Inventors: Hamed Sadeghian Marnani, Maarten Hubertus van Es, Rutger Meijer Timmerman Thijssen
  • Publication number: 20190204276
    Abstract: The present invention relates to a heterodyne scanning probe microscopy method for imaging structures on or below the surface of a sample, the method including applying, using a transducer, an acoustic input signal to the sample sensing, using a probe including a probe tip in contact with the surface, an acoustic output signal, wherein the acoustic output signal is representative of acoustic surface waves induced by the acoustic input signal wherein the acoustic input signal comprises at least a first signal component having a frequency above 1 gigahertz, and wherein for detecting of the acoustic output signal the method comprises a step of applying a further acoustic input signal to at least one of the probe or the sample for obtaining a mixed acoustic signal, the further acoustic input signal including at least a second signal component having a frequency above 1 gigahertz, wherein the mixed acoustic signal comprises a third signal component having a frequency equal to a difference between the first frequen
    Type: Application
    Filed: April 13, 2017
    Publication date: July 4, 2019
    Inventors: Hamed Sadeghian Marnani, Maarten Hubertus van Es, Paul Louis Maria Joseph van Neer, Rutger Meijer Timmerman Thijssen
  • Patent number: 10338098
    Abstract: A thermal probe and method for generating a thermal map (M) of a sample interface (1). A scanning thermal microscope (100) is provided having at least one or more probe tips (11,12). The probe tips (11,12) are scanned at a near-field distance (D1) over the sample interface (1). Heat flux data (H) is recorded as a function of a relative position (X,Y) of the probe tip (11) over the sample interface (1). The thermal map (M) is calculated from the recorded heat flux data (H) based on a spatially resolved heat flux profile (P) of the probe tip (11) at the sample interface (1). The heat flux profile (P) has a local maximum at a lateral distance (R) across the sample interface (1) with respect to an apex (11a) of the probe tip (11).
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: July 2, 2019
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Hamed Sadeghian Marnani, Roy Jacobus Franciscus Bijster
  • Publication number: 20190178641
    Abstract: A distance sensor (1) for estimating a distance to a surface (OS) of an object (O), the distance sensor including a micro electric mechanical system (MEMS) (5), a detection means (30) and a processing device (40). The MEMS comprises a MEMS device (10) having a surface (12), denoted as MEMS sensor surface, to be arranged opposite the surface (OS) of said object (O) and a MEMS driver (20) for generating an ac driving signal to cause the MEMS sensor surface (12) to vibrate. The detection means (30) is to determine a value of a property of a dynamic behavior of the MEMS (5) and the processing device (40) is to estimate an average distance (h) as a measured distance (D2) between the MEMS sensor surface (12) and the surface (Os) of the object (O) based on the determined value for said property.
    Type: Application
    Filed: August 25, 2017
    Publication date: June 13, 2019
    Inventor: Hamed Sadeghian Marnani
  • Publication number: 20190154636
    Abstract: Method of tuning parameter settings for performing acoustic scanning probe microscopy for subsurface imaging, scanning probe microscopy system, and computer program product. This document relates to a method of tuning a scanning probe microscopy system. The method comprises: a) applying an acoustic vibration signal comprising a first frequency and a second frequency to a sample; b) at a first position of the probe tip, sweeping the first frequency across a first frequency range, and obtaining a first signal; c) at a second position of the probe tip, sweeping the first frequency across at least said first frequency range, and obtaining a second signal; d) analyzing the first and second signals to obtain a difference characteristic dependent on the first frequency. The first and second position are selected such that a subsurface structure of the sample at the first and second position is different.
    Type: Application
    Filed: April 13, 2017
    Publication date: May 23, 2019
    Inventors: Hamed Sadeghian Marnani, Rutger Meijer Timmerman Thijssen, Maarten Hubetus van Es
  • Publication number: 20190025340
    Abstract: A method and system for calibrating force (F12) in a dynamic mode atomic force microscope (AFM). An AFM tip (11) is disposed on a first cantilever (12). The first cantilever (12) is actuated to oscillate the AFM tip (11) in a dynamic mode. A first sensor (16) is configured to measure a first parameter (A1) of the oscillating AFM tip (11). A second sensor (26) is configured to measure a second parameter (A2) of a resilient element (22). The oscillating AFM tip (11) is moved in proximity to the resilient element (22) while measuring the first parameter (A1) of the AFM tip (11) and the second parameter (A2) of the resilient element (22). A force (F12) between the oscillating AFM tip (11) and the resilient element (22) is calculated based on the measured second parameter (A2) and a calibrated force constant (K2) of the resilient element (22).
    Type: Application
    Filed: August 17, 2016
    Publication date: January 24, 2019
    Inventors: Hamed Sadeghian Marnani, Mehmet Selman Tamer
  • Publication number: 20180329312
    Abstract: This document describes a method of determining an overlay error during manufacturing of a multilayer semiconductor device. Manufacturing of the semiconductor device comprises forming a stack of material layers comprising depositing of at least two subsequent patterned layers of semiconductor material, the patterned layers comprising a first patterned layer having a first marker element and a second patterned layer having a second marker element. The determining of the overlay error comprises determining relative positions of the first and second marker element in relation to each other, such as to determine the overlay error between the first patterned layer and the second patterned layer. In addition an imaging step is performed on at least one of said first and second patterned layer, for determining relative positions of the respective first or second marker element and a pattern feature of a device pattern comprised by said respective first and second patterned layer.
    Type: Application
    Filed: November 17, 2016
    Publication date: November 15, 2018
    Inventors: Stefan Kuiper, Erwin John van Zwet, Stefan Michael Bruno Bäumer, Hamed Sadeghian Marnani
  • Publication number: 20180306837
    Abstract: This document relates to a method of performing surface measurements on a surface of a sample using a scanning probe microscopy system. The system comprises a sample support structure for supporting a sample, a sensor head including a probe comprising a cantilever and a probe tip arranged on the cantilever, and an actuator for scanning the probe tip relative to the substrate surface for mapping of the nanostructures. The method comprising the steps of: vibrating the cantilever using an actuator and moving the probe relative to the substrate surface for performing said scanning. The probe is held at a distance to the substrate surface such as to allow contact at a plurality of intermittent contact moments between the probe tip and the surface during said vibrating of the cantilever. The steps of vibrating of the cantilever and moving of the probe are performed concurrently.
    Type: Application
    Filed: October 21, 2016
    Publication date: October 25, 2018
    Inventors: Hamed Sadeghian Marnani, Aliasghar Keyvani Janbahan
  • Patent number: 10067158
    Abstract: The invention is directed at a method of performing scanning probe microscopy on a substrate surface using a scanning probe microscopy system, the system including at least one probe head, the probe head comprising a probe tip arranged on a cantilever and a tip position detector for determining a position of the probe tip along a z-direction transverse to an image plane, the method comprising: positioning the at least one probe head relative to the substrate surface; moving the probe tip and the substrate surface relative to each other in one or more directions parallel to the image plane for scanning of the substrate surface with the probe tip; and determining the position of the probe tip with the tip position detector during said scanning for mapping nanostructures on the substrate surface; wherein said step of positioning is performed by placing the at least one probe head on a static carrier surface.
    Type: Grant
    Filed: July 3, 2015
    Date of Patent: September 4, 2018
    Assignee: Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek TNO
    Inventors: Hamed Sadeghian Marnani, Jasper Winters, William Edward Crowcombe, Teunis Cornelis van den Dool, Geerten Frans Ijsbrand Kramer
  • Publication number: 20180238931
    Abstract: The present document describes a device for measuring and/or modifying surface features and/or sub-surface features on or below a surface of a sample. The system comprises a sample carrier, one or more heads, and a support structure. The support structure comprises a reference surface for providing a positioning reference. The heads are separate from the sample carrier and the support structure, and the device further comprises a pick and place manipulator arranged for positioning the heads at respective working positions. The manipulator comprises a gripper and an actuator for moving the gripper, wherein the actuator is arranged for providing a motion in a direction transverse to the reference surface. The gripper is arranged for engaging and releasing the respective heads from the transverse motion. The document also describes a method of measuring and/or modifying surface features on a surface of a sample.
    Type: Application
    Filed: August 18, 2016
    Publication date: August 23, 2018
    Inventor: Hamed SADEGHIAN MARNANI
  • Publication number: 20180203040
    Abstract: A thermal probe and method for generating a thermal map (M) of a sample interface (1). A scanning thermal microscope (100) is provided having at least one or more probe tips (11,12). The probe tips (11,12) are scanned at a near-field distance (D1) over the sample interface (1). Heat flux data (H) is recorded as a function of a relative position (X,Y) of the probe tip (11) over the sample interface (1). The thermal map (M) is calculated from the recorded heat flux data (H) based on a spatially resolved heat flux profile (P) of the probe tip (11) at the sample interface (1). The heat flux profile (P) has a local maximum at a lateral distance (R) across the sample interface (1) with respect to an apex (11a) of the probe tip (11).
    Type: Application
    Filed: July 15, 2016
    Publication date: July 19, 2018
    Inventors: Hamed Sadeghian Marnani, Roy Jacobus Franciscus Bijster
  • Publication number: 20180203036
    Abstract: The invention is directed at a positioning arm for positioning of a scan head of a surface scanning measurement device—such as a scanning probe microscopy device—relative to a surface. The positioning arm comprises a base at a first end thereof for mounting the arm with the base to a static reference structure. The positioning arm further comprises a first and a second arm member extending from the base, the second arm member extending parallel to the first arm member. The arm comprises a bridge member at a second end thereof, connecting the first and the second arm members. The first and the second arm member are respectively connected to each one of said base and said bridge member by means of a hingeable connection.
    Type: Application
    Filed: July 14, 2016
    Publication date: July 19, 2018
    Inventors: Hamed Sadeghian Marnani, Jasper Winters, William Edward Crowcombe
  • Publication number: 20180180644
    Abstract: Thermal probe (10) for a scanning thermal microscope (100), use, and process of manufacturing. The thermal probe (10) comprises a single-material (M1) thermal conducting body (12) consisting of a probe frame (14) ending in a probe tip (11). A bi-material (M1,M2) cantilever strip (13) is connected to the probe frame (14) in thermal communication with the probe tip (11). The cantilever strip (13) in unbended state lies in-plane (X,Z) with the probe tip (11). The cantilever strip (13) comprises layers of material (M1,M2) having different coefficients of thermal expansion configured to bend the cantilever strip (13) with respect to the single-material thermal conducting body (12) as a function of the heat exchange (H) between the probe tip (11) and the microscopic structure (2) for measuring heat exchange (H) with a sample interface (1) by means of measuring the bending of the cantilever strip (13).
    Type: Application
    Filed: June 14, 2016
    Publication date: June 28, 2018
    Inventors: Hamed Sadeghian Marnani, Roy Jacobus Franciscus Bijster
  • Patent number: 9897626
    Abstract: A scanning probe microscope is provided comprising a scanning probe (10), a holder (5) for holding a sample (SMP) in an environment free from liquid. A scanning arrangement (20) is provided therein for inducing a relative motion of the scanning probe (10) with respect to said sample (SMP) along a surface of the sample (SMP). A driver (30) generates a drive signal (Sd) to induce an oscillating motion of the scanning probe (10) relative to the surface of the sample to be scanned. A measuring unit (40) measure a deflection of the scanning probe (10), and provides a deflection signal (S?) indicative for said deflection. An amplitude detector (50) detects an amplitude of the oscillating motion as indicated by the deflection signal (S?) and provides an amplitude signal (Sa) indicative for the amplitude. The scanning probe (10) is at least partly arranged in a liquid (L) to dampen motion of said scanning probe, and therewith has a quality factor Q which is less than or equal than 5.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: February 20, 2018
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Femke Chantal Tabak, Hamed Sadeghian Marnani, Maarten Hubertus van Es
  • Publication number: 20170307655
    Abstract: A scanning probe microscope is provided comprising a scanning probe (10), a holder (5) for holding a sample (SMP) in an environment free from liquid. A scanning arrangement (20) is provided therein for inducing a relative motion of the scanning probe (10) with respect to said sample (SMP) along a surface of the sample (SMP). A driver (30) generates a drive signal (Sd) to induce an oscillating motion of the scanning probe (10) relative to the surface of the sample to be scanned. A measuring unit (40) measure a deflection of the scanning probe (10), and provides a deflection signal (S?) indicative for said deflection. An amplitude detector (50) detects an amplitude of the oscillating motion as indicated by the deflection signal (S?) and provides an amplitude signal (Sa) indicative for the amplitude. The scanning probe (10) is at least partly arranged in a liquid (L) to dampen motion of said scanning probe, and therewith has a quality factor Q which is less than or equal than 5.
    Type: Application
    Filed: October 5, 2015
    Publication date: October 26, 2017
    Inventors: Femke Chantal TABAK, Hamed SADEGHIAN MARNANI, Maarten Hubertus VAN ES
  • Patent number: 9766266
    Abstract: The invention is directed at a method of advancing a probe tip of a probe of a scanning microscopy device towards a sample surface. The scanning microscopy device comprises the probe for scanning the sample surface for mapping nanostructures on the sample surface. The probe tip of the probe is mounted on a cantilever arranged for bringing the probe tip in contact with the sample surface. The method comprises controlling, by a controller, an actuator system of the device for moving the probe to the sample surface, and receiving, by the controller, a sensor signal indicative of at least one operational parameter of the probe for providing feedback to perform said controlling.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: September 19, 2017
    Assignee: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk onderzoek TNO
    Inventors: Hamed Sadeghian Marnani, Geerten Frans Ijsbrand Kramer, Teunis Cornelis van den Dool