Patents by Inventor Han-De Chen

Han-De Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11996317
    Abstract: A method includes etching a semiconductor substrate to form a trench and a semiconductor strip. A sidewall of the semiconductor strip is exposed to the trench. The method further includes depositing a silicon-containing layer extending into the trench, wherein the silicon-containing layer extends on the sidewall of the semiconductor strip, filling the trench with a dielectric material, wherein the dielectric material is on a sidewall of the silicon-containing layer, and oxidizing the silicon-containing layer to form a liner. The liner comprises oxidized silicon. The liner and the dielectric material form parts of an isolation region. The isolation region is recessed, so that a portion of the semiconductor strip protrudes higher than a top surface of the isolation region and forms a semiconductor fin.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: May 28, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Po-Kai Hsiao, Han-De Chen, Tsai-Yu Huang, Huicheng Chang, Yee-Chia Yeo
  • Patent number: 11908708
    Abstract: A method includes bonding a package component to a composite carrier. The composite carrier includes a base carrier and an absorption layer, and the absorption layer is between the base carrier and the package component. A laser beam is projected onto the composite carrier. The laser beam penetrates through the base carrier to ablate the absorption layer. The base carrier may then be separated from the package component.
    Type: Grant
    Filed: September 20, 2021
    Date of Patent: February 20, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Huicheng Chang, Jyh-Cherng Sheu, Chen-Fong Tsai, Yun Chen Teng, Han-De Chen, Yee-Chia Yeo
  • Patent number: 11855040
    Abstract: Methods of ion implantation combined with annealing using a pulsed laser or a furnace for cutting substrate in forming semiconductor devices and semiconductor devices including the same are disclosed. In an embodiment, a method includes forming a transistor structure of a device on a first semiconductor substrate; forming a front-side interconnect structure over a front side of the transistor structure; bonding a carrier substrate to the front-side interconnect structure; implanting ions into the first semiconductor substrate to form an implantation region of the first semiconductor substrate; and removing the first semiconductor substrate. Removing the first semiconductor substrate includes applying an annealing process to separate the implantation region from a remainder region of the first semiconductor substrate. The method also includes forming a back-side interconnect structure over a back side of the transistor structure.
    Type: Grant
    Filed: October 8, 2021
    Date of Patent: December 26, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Huicheng Chang, Jyh-Cherng Sheu, Chen-Fong Tsai, Yun Chen Teng, Han-De Chen, Yee-Chia Yeo
  • Patent number: 11842933
    Abstract: In an embodiment, a device includes: a first semiconductor strip over a substrate, the first semiconductor strip including a first channel region; a second semiconductor strip over the substrate, the second semiconductor strip including a second channel region; a dielectric strip disposed between the first semiconductor strip and the second semiconductor strip, a width of the dielectric strip decreasing along a first direction extending away from the substrate, the dielectric strip including a void; and a gate structure extending along the first channel region, along the second channel region, and along a top surface and sidewalls of the dielectric strip.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: December 12, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Tsai-Yu Huang, Han-De Chen, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20230378001
    Abstract: In an embodiment, a device includes: a first semiconductor strip over a substrate, the first semiconductor strip including a first channel region; a second semiconductor strip over the substrate, the second semiconductor strip including a second channel region; a dielectric strip disposed between the first semiconductor strip and the second semiconductor strip, a width of the dielectric strip decreasing along a first direction extending away from the substrate, the dielectric strip including a void; and a gate structure extending along the first channel region, along the second channel region, and along a top surface and sidewalls of the dielectric strip.
    Type: Application
    Filed: August 4, 2023
    Publication date: November 23, 2023
    Inventors: Tsai-Yu Huang, Han-De Chen, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20230067346
    Abstract: In an embodiment, a wafer bonding system includes a chamber, a gas inlet and a gas outlet configured to control a pressure of the chamber to be in a range from 1×10?2 mbar to 1520 torr, a first wafer chuck having a first surface to support a first wafer, and a second wafer chuck having a second surface to support a second wafer, the second surface being opposite the first surface, the second wafer chuck and the first wafer chuck being movable relative to each other, wherein the second surface that supports the second wafer is divided into zones, wherein a vacuum pressure of each zone is controlled independently of other zones.
    Type: Application
    Filed: August 26, 2021
    Publication date: March 2, 2023
    Inventors: Han-De Chen, Yun Chen Teng, Chen-Fong Tsai, Jyh-Cherng Sheu, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20230067088
    Abstract: The present disclosure provides a substrate bonding apparatus capable of temperature monitoring and temperature control. The substrate bonding apparatus comprises a fluid cooling module and a sensor module for detecting temperatures at multiple zones (e.g., two or more zones) within a substrate. The substrate bonding apparatus according to the present disclosure achieves temperature stabilization within the substrate. The substrate bonding apparatus further improves bonding process performance by reducing distortion residual, reducing bubbles on edges of the substrate, and reducing non-bonded area within the substrate.
    Type: Application
    Filed: August 30, 2021
    Publication date: March 2, 2023
    Inventors: Han-De CHEN, Yun-Chen TENG, Chen-Fong TSAI, Jyh-Cherng SHEU, Huicheng CHANG, Yee-Chia YEO
  • Publication number: 20230063975
    Abstract: A method of forming a semiconductor device includes loading a first wafer and a second wafer into a wafer bonding system. A relative humidity within the wafer bonding system is measured a first time. After measuring the relative humidity, the relative humidity within the wafer bonding system may be adjusted to be within a desired range. When the relative humidity is within the desired range, the first wafer is bonded to the second wafer.
    Type: Application
    Filed: August 27, 2021
    Publication date: March 2, 2023
    Inventors: Yun Chen Teng, Chen-Fong Tsai, Han-De Chen, Jyh-Cherng Sheu, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20230019415
    Abstract: A method includes placing a first wafer on a first wafer stage, placing a second wafer on a second wafer stage, and pushing a center portion of the first wafer to contact the second wafer. A bonding wave propagates from the center portion to edge portions of the first wafer and the second wafer. When the bonding wave propagates from the center portion to the edge portions of the first wafer and the second wafer, a stage gap between the top wafer stage and the bottom wafer stage is reduced.
    Type: Application
    Filed: January 18, 2022
    Publication date: January 19, 2023
    Inventors: Han-De Chen, Cheng-I Chu, Yun Chen Teng, Chen-Fong Tsai, Jyh-Cherng Sheu, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20230010038
    Abstract: Wafer bonding apparatus and method are provided. A method includes performing a first plasma activation process on a first surface of a first wafer. The first plasma activation process forms a first high-activation region and a first low-activation region on the first surface of the first wafer. A first cleaning process is performed on the first surface of the first wafer. The first cleaning process forms a first plurality of silanol groups in the first high-activation region and the first low-activation region. The first high-activation region includes more silanol groups than the first low-activation region. The first wafer is bonded to a second wafer.
    Type: Application
    Filed: September 10, 2021
    Publication date: January 12, 2023
    Inventors: Cheng-I Chu, Han-De Chen, Chen-Fong Tsai, Jyh-Cherng Sheu, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20220406621
    Abstract: A method includes bonding a package component to a composite carrier. The composite carrier includes a base carrier and an absorption layer, and the absorption layer is between the base carrier and the package component. A laser beam is projected onto the composite carrier. The laser beam penetrates through the base carrier to ablate the absorption layer. The base carrier may then be separated from the package component.
    Type: Application
    Filed: September 20, 2021
    Publication date: December 22, 2022
    Inventors: Huicheng Chang, Jyh-Cherng Sheu, Chen-Fong Tsai, Yun Chen Teng, Han-De Chen, Yee-Chia Yeo
  • Publication number: 20220367249
    Abstract: A method of forming a semiconductor device includes mounting a bottom wafer on a bottom chuck and mounting a top wafer on a top chuck, wherein one of the bottom chuck and the top chuck has a gasket. The top chuck is moved towards the bottom chuck. The gasket forms a sealed region between the bottom chuck and the top chuck around the top wafer and the bottom wafer. An ambient pressure in the sealed region is adjusted. The top wafer is bonded to the bottom wafer.
    Type: Application
    Filed: July 16, 2021
    Publication date: November 17, 2022
    Inventors: Chieh Chang, Chen-Fong Tsai, Yun Chen Teng, Han-De Chen, Jyh-Cherng Sheu, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20220367410
    Abstract: Methods of ion implantation combined with annealing using a pulsed laser or a furnace for cutting substrate in forming semiconductor devices and semiconductor devices including the same are disclosed. In an embodiment, a method includes forming a transistor structure of a device on a first semiconductor substrate; forming a front-side interconnect structure over a front side of the transistor structure; bonding a carrier substrate to the front-side interconnect structure; implanting ions into the first semiconductor substrate to form an implantation region of the first semiconductor substrate; and removing the first semiconductor substrate. Removing the first semiconductor substrate includes applying an annealing process to separate the implantation region from a remainder region of the first semiconductor substrate. The method also includes forming a back-side interconnect structure over a back side of the transistor structure.
    Type: Application
    Filed: October 8, 2021
    Publication date: November 17, 2022
    Inventors: Huicheng Chang, Jyh-Cherng Sheu, Chen-Fong Tsai, Yun Chen Teng, Han-De Chen, Yee-Chia Yeo
  • Publication number: 20220230926
    Abstract: In an embodiment, a device includes: a first semiconductor strip over a substrate, the first semiconductor strip including a first channel region; a second semiconductor strip over the substrate, the second semiconductor strip including a second channel region; a dielectric strip disposed between the first semiconductor strip and the second semiconductor strip, a width of the dielectric strip decreasing along a first direction extending away from the substrate, the dielectric strip including a void; and a gate structure extending along the first channel region, along the second channel region, and along a top surface and sidewalls of the dielectric strip.
    Type: Application
    Filed: January 15, 2021
    Publication date: July 21, 2022
    Inventors: Tsai-Yu Huang, Han-De Chen, Huicheng Chang, Yee-Chia Yeo
  • Publication number: 20220230908
    Abstract: A method includes etching a semiconductor substrate to form a trench and a semiconductor strip. A sidewall of the semiconductor strip is exposed to the trench. The method further includes depositing a silicon-containing layer extending into the trench, wherein the silicon-containing layer extends on the sidewall of the semiconductor strip, filling the trench with a dielectric material, wherein the dielectric material is on a sidewall of the silicon-containing layer, and oxidizing the silicon-containing layer to form a liner. The liner comprises oxidized silicon. The liner and the dielectric material form parts of an isolation region. The isolation region is recessed, so that a portion of the semiconductor strip protrudes higher than a top surface of the isolation region forms a semiconductor fin.
    Type: Application
    Filed: January 15, 2021
    Publication date: July 21, 2022
    Inventors: Po-Kai Hsiao, Han-De Chen, Tsai-Yu Huang, Huicheng Chang, Yee-Chia Yeo