Patents by Inventor Hanae Shimokawa

Hanae Shimokawa has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10481023
    Abstract: A mechanical quantity measuring device includes: a sensor chip having a strain detector formed on a surface of a semiconductor substrate and a plurality of electrodes connected to the strain detector; a stem having ascot that protrudes from an adjacent peripheral portion and has an upper surface that is attached to a lower surface of the sensor chip by a bonding material formed from a metallic material or a glass material; a lead-out wiring part including a plurality of wires that are electrically connected to the plurality of electrodes; and a fixing part for fixing the stem, wherein: the stem and the fixing part are integrally molded or fixed through metallic bonding or mechanical bonding.
    Type: Grant
    Filed: January 26, 2015
    Date of Patent: November 19, 2019
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Hanae Shimokawa, Hiroyuki Oota, Atsushi Kazama, Shohei Hata, Takuto Yamaguchi, Atsuo Soma, Kisho Ashida, Junji Onozuka, Kentarou Miyajima, Masayuki Hio
  • Patent number: 10247630
    Abstract: A semiconductor device includes a metal body; a bonding layer placed on the metal body; and a semiconductor chip placed on the bonding layer. The bonding layer includes a filler-containing first layer formed between the metal body and the semiconductor chip and a second layer bonded to the first layer and the semiconductor chip. The second layer has a thermal expansion coefficient higher than that of the first layer.
    Type: Grant
    Filed: June 30, 2016
    Date of Patent: April 2, 2019
    Assignee: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Hanae Shimokawa, Shosaku Ishihara, Atsuo Soma, Junji Onozuka, Hiroshi Onuki, Daisuke Terada, Mizuki Shibata
  • Publication number: 20180202883
    Abstract: A semiconductor device includes a metal body; a bonding layer placed on the metal body; and a semiconductor chip placed on the bonding layer. The bonding layer includes a filler-containing first layer formed between the metal body and the semiconductor chip and a second layer bonded to the first layer and the semiconductor chip. The second layer has a thermal expansion coefficient higher than that of the first layer.
    Type: Application
    Filed: June 30, 2016
    Publication date: July 19, 2018
    Applicant: HITACHI AUTOMOTIVE SYSTEMS, LTD.
    Inventors: Hanae SHIMOKAWA, Shosaku ISHIHARA, Atsuo SOMA, Junji ONOZUKA, Hiroshi ONUKI, Daisuke TERADA, Mizuki SHIBATA
  • Publication number: 20170108390
    Abstract: A mechanical quantity measuring device includes: a sensor chip having a strain detector formed on a surface of a semiconductor substrate and a plurality of electrodes connected to the strain detector; a stem having ascot that protrudes from an adjacent peripheral portion and has an upper surface that is attached to a lower surface of the sensor chip by a bonding material formed from a metallic material or a glass material; a lead-out wiring part including a plurality of wires that are electrically connected to the plurality of electrodes; and a fixing part for fixing the stem, wherein: the stem and the fixing part are integrally molded or fixed through metallic bonding or mechanical bonding.
    Type: Application
    Filed: January 26, 2015
    Publication date: April 20, 2017
    Inventors: Hanae SHIMOKAWA, Hiroyuki OOTA, Atsushi KAZAMA, Shohei HATA, Takuto YAMAGUCHI, Atsuo SOMA, Kisho ASHIDA, Junji ONOZUKA, Kentarou MIYAJIMA, Masayuki HIO
  • Patent number: 8907475
    Abstract: Provided are a bonded structure by a lead-free solder and an electronic article comprising the bonded structure. The bonded structure has a stable bonding interface with respect to a change in process of time, an enough strength and resistance to occurrence of whiskers while keeping good wettability of the solder. In the bonded structure, a lead-free Sn—Ag—Bi alloy solder is applied to an electrode through an Sn—Bi alloy layer. The Sn—Bi alloy, preferably, comprises 1 to 20 wt % Bi in order to obtain good wettability of the solder. In order to obtain desirable bonding characteristics having higher reliability in the invention, a copper layer is provided under the Sn—Bi alloy layer thereby obtaining an enough bonding strength.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: December 9, 2014
    Assignee: Renesas Electronics Corporation
    Inventors: Hanae Shimokawa, Tasao Soga, Hiroaki Okudaira, Toshiharu Ishida, Tetsuya Nakatsuka, Yoshiharu Inaba, Asao Nishimura
  • Publication number: 20130286621
    Abstract: Provided are a bonded structure by a lead-free solder and an electronic article comprising the bonded structure. The bonded structure has a stable bonding interface with respect to a change in process of time, an enough strength and resistance to occurrence of whiskers while keeping good wettability of the solder. In the bonded structure, a lead-free Sn—Ag—Bi alloy solder is applied to an electrode through an Sn—Bi alloy layer. The Sn—Bi alloy, preferably, comprises 1 to 20 wt % Bi in order to obtain good wettability of the solder. In order to obtain desirable bonding characteristics having higher reliability in the invention, a copper layer is provided under the Sn—Bi alloy layer thereby obtaining an enough bonding strength.
    Type: Application
    Filed: June 21, 2013
    Publication date: October 31, 2013
    Inventors: Hanae SHIMOKAWA, Tasao SOGA, Hiroaki OKUDAIRA, Toshiharu ISHIDA, Tetsuya NAKATSUKA, Yoshiharu INABA, Asao NISHIMURA
  • Patent number: 8503189
    Abstract: Provided are a bonded structure by a lead-free solder and an electronic article comprising the bonded structure. The bonded structure has a stable bonding interface with respect to a change in process of time, an enough strength and resistance to occurrence of whiskers while keeping good wettability of the solder. In the bonded structure, a lead-free Sn—Ag—Bi alloy solder is applied to an electrode through an Sn—Bi alloy layer. The Sn—Bi alloy, preferably, comprises 1 to 20 wt % Bi in order to obtain good wettability of the solder. In order to obtain desirable bonding characteristics having higher reliability in the invention, a copper layer is provided under the Sn—Bi alloy layer thereby obtaining an enough bonding strength.
    Type: Grant
    Filed: May 4, 2010
    Date of Patent: August 6, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Hanae Shimokawa, Tasao Soga, Hiroaki Okudaira, Toshiharu Ishida, Tetsuya Nakatsuka, Yoshiharu Inaba, Asao Nishimura
  • Patent number: 8125090
    Abstract: Use of Pb-free solder has become essential due to the environmental problem. A power module is formed by soldering substrates with large areas. It is known that in Sn-3Ag-0.5Cu which hardly creeps and deforms with respect to large deformation followed by warpage of the substrate, life is significantly shortened with respect to the temperature cycle test, and the conventional module structure is in the situation having difficulty in securing high reliability. Thus, the present invention has an object to select compositions from which increase in life can be expected at a low strain rate. In Sn solder, by doping In by 3 to 7% and Ag by 2 to 4.5%, the effect of delaying crack development at a low strain rate is found out, and as a representative composition stable at a high temperature, Sn-3Ag-0.5Cu-5In is selected. Further, for enhancement of reliability, a method for partially coating a solder end portion with a resin is shown.
    Type: Grant
    Filed: July 27, 2010
    Date of Patent: February 28, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Tasao Soga, Daisuke Kawase, Kazuhiro Suzuki, Eiichi Morisaki, Katsuaki Saito, Hanae Shimokawa
  • Patent number: 8022551
    Abstract: Each of junctions formed between a semiconductor device and a substrate comprises metal balls of Cu, or other materials and compounds of Sn and the metal balls, and the metal balls are bonded together by the compounds.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: September 20, 2011
    Assignee: Renesas Electronics Corporation
    Inventors: Tasao Soga, Hanae Shimokawa, Tetsuya Nakatsuka, Kazuma Miura, Mikio Negishi, Hirokazu Nakajima, Tsuneo Endoh
  • Patent number: 8004075
    Abstract: Use of Pb-free solder has become essential due to the environmental problem. A power module is formed by soldering substrates with large areas. It is known that in Sn-3Ag-0.5Cu which hardly creeps and deforms with respect to large deformation followed by warpage of the substrate, life is significantly shortened with respect to the temperature cycle test, and the conventional module structure is in the situation having difficulty in securing high reliability. Thus, the present invention has an object to select compositions from which increase in life can be expected at a low strain rate. In Sn solder, by doping In by 3 to 7% and Ag by 2 to 4.5%, the effect of delaying crack development at a low strain rate is found out, and as a representative composition stable at a high temperature, Sn-3Ag-0.5Cu-5In is selected. Further, for enhancement of reliability, a method for partially coating a solder end portion with a resin is shown.
    Type: Grant
    Filed: April 24, 2007
    Date of Patent: August 23, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Tasao Soga, Daisuke Kawase, Kazuhiro Suzuki, Eiichi Morisaki, Katsuaki Saito, Hanae Shimokawa
  • Publication number: 20100289148
    Abstract: Use of Pb-free solder has become essential due to the environmental problem. A power module is formed by soldering substrates with large areas. It is known that in Sn-3Ag-0.5Cu which hardly creeps and deforms with respect to large deformation followed by warpage of the substrate, life is significantly shortened with respect to the temperature cycle test, and the conventional module structure is in the situation having difficulty in securing high reliability. Thus, the present invention has an object to select compositions from which increase in life can be expected at a low strain rate. In Sn solder, by doping In by 3 to 7% and Ag by 2 to 4.5%, the effect of delaying crack development at a low strain rate is found out, and as a representative composition stable at a high temperature, Sn-3Ag-0.5Cu-5In is selected. Further, for enhancement of reliability, a method for partially coating a solder end portion with a resin is shown.
    Type: Application
    Filed: July 27, 2010
    Publication date: November 18, 2010
    Inventors: Tasao SOGA, Daisuke Kawase, Kazuhiro Suzuki, Eiichi Morisaki, Katsuaki Saito, Hanae Shimokawa
  • Publication number: 20100214753
    Abstract: Provided are a bonded structure by a lead-free solder and an electronic article comprising the bonded structure. The bonded structure has a stable bonding interface with respect to a change in process of time, an enough strength and resistance to occurrence of whiskers while keeping good wettability of the solder. In the bonded structure, a lead-free Sn—Ag—Bi alloy solder is applied to an electrode through an Sn—Bi alloy layer. The Sn—Bi alloy, preferably, comprises 1 to 20 wt % Bi in order to obtain good wettability of the solder. In order to obtain desirable bonding characteristics having higher reliability in the invention, a copper layer is provided under the Sn—Bi alloy layer thereby obtaining an enough bonding strength.
    Type: Application
    Filed: May 4, 2010
    Publication date: August 26, 2010
    Inventors: Hanae SHIMOKAWA, Tasao Soga, Hiroaki Okudaira, Toshiharu Ishida, Tetsuya Nakatsuka, Yoshiharu Inaba, Asao Nishimura
  • Patent number: 7709746
    Abstract: Provided are a bonded structure by a lead-free solder and an electronic article comprising the bonded structure. The bonded structure has a stable bonding interface with respect to a change in process of time, an enough strength and resistance to occurrence of whiskers while keeping good wettability of the solder. In the bonded structure, a lead-free Sn—Ag—Bi alloy solder is applied to an electrode through an Sn—Bi alloy layer. The Sn—Bi alloy, preferably, comprises 1 to 20 wt % Bi in order to obtain good wettability of the solder. In order to obtain desirable bonding characteristics having higher reliability in the invention, a copper layer is provided under the Sn—Bi alloy layer thereby obtaining an enough bonding strength.
    Type: Grant
    Filed: January 13, 2006
    Date of Patent: May 4, 2010
    Assignee: Renesas Technology Corp.
    Inventors: Hanae Shimokawa, Tasao Soga, Hiroaki Okudaira, Toshiharu Ishida, Tetsuya Nakatsuka, Yoshiharu Inaba, Asao Nishimura
  • Publication number: 20070246833
    Abstract: Use of Pb-free solder has become essential due to the environmental problem. A power module is formed by soldering substrates with large areas. It is known that in Sn-3Ag-0.5Cu which hardly creeps and deforms with respect to large deformation followed by warpage of the substrate, life is significantly shortened with respect to the temperature cycle test, and the conventional module structure is in the situation having difficulty in securing high reliability. Thus, the present invention has an object to select compositions from which increase in life can be expected at a low strain rate. In Sn solder, by doping In by 3 to 7% and Ag by 2 to 4.5%, the effect of delaying crack development at a low strain rate is found out, and as a representative composition stable at a high temperature, Sn-3Ag-0.5Cu-5In is selected. Further, for enhancement of reliability, a method for partially coating a solder end portion with a resin is shown.
    Type: Application
    Filed: April 24, 2007
    Publication date: October 25, 2007
    Inventors: Tasao Soga, Daisuke Kawase, Kazuhiro Suzuki, Eiichi Morisaki, Katsuaki Saito, Hanae Shimokawa
  • Patent number: 7259465
    Abstract: Each of junctions formed between a semiconductor device and a substrate comprises metal balls of Cu, etc., and compounds of Sn and the metal balls, and the metal balls are bonded together by the compounds.
    Type: Grant
    Filed: March 22, 2002
    Date of Patent: August 21, 2007
    Assignee: Hitachi, Ltd.
    Inventors: Tasao Soga, Hanae Shimokawa, Tetsuya Nakatsuka, Kazuma Miura, Mikio Negishi, Hirokazu Nakajima, Tsuneo Endoh
  • Publication number: 20070031279
    Abstract: Each of junctions formed between a semiconductor device and a substrate comprises metal balls of Cu, or other materials and compounds of Sn and the metal balls, and the metal balls are bonded together by the compounds.
    Type: Application
    Filed: April 7, 2006
    Publication date: February 8, 2007
    Applicant: Renesas Technology Corporation
    Inventors: Tasao Soga, Hanae Shimokawa, Tetsuya Nakatsuka, Kazuma Miura, Mikio Negishi, Hirokazu Nakajima, Tsuneo Endoh
  • Patent number: 7145236
    Abstract: A semiconductor module solder bonding of high reliability in which the heat resisting properties of the circuit substrate and electronic parts are taken into consideration. In order to achieve this, there are provided semiconductor devices each having solder bumps as external pads, and a circuit substrate bonded to the external pads of each of the semiconductor devices through a solder paste, each of the solder bumps being made of a first lead-free solder, the solder paste being made of a second lead-free solder having a melting point lower than that of the first lead-free solder.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: December 5, 2006
    Assignee: Renesas Technology Corp.
    Inventors: Kazuma Miura, Hanae Shimokawa, Koji Serizawa, Tasao Soga, Tetsuya Nakatsuka
  • Patent number: 7075183
    Abstract: Each of junctions formed between a semiconductor device and a substrate comprises metal balls of Cu etc. and compounds of Sn and the metal balls, and the metal balls are bonded together by the compounds.
    Type: Grant
    Filed: June 12, 2001
    Date of Patent: July 11, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Tasao Soga, Hanae Shimokawa, Tetsuya Nakatsuka, Kazuma Miura, Mikio Negishi, Hirokazu Nakajima, Tsuneo Endoh
  • Publication number: 20060115994
    Abstract: Provided are a bonded structure by a lead-free solder and an electronic article comprising the bonded structure. The bonded structure has a stable bonding interface with respect to a change in process of time, an enough strength and resistance to occurrence of whiskers while keeping good wettability of the solder. In the bonded structure, a lead-free Sn—Ag—Bi alloy solder is applied to an electrode through an Sn—Bi alloy layer. The Sn—Bi alloy, preferably, comprises 1 to 20 wt % Bi in order to obtain good wettability of the solder. In order to obtain desirable bonding characteristics having higher reliability in the invention, a copper layer is provided under the Sn—Bi alloy layer thereby obtaining an enough bonding strength.
    Type: Application
    Filed: January 13, 2006
    Publication date: June 1, 2006
    Inventors: Hanae Shimokawa, Tasao Soga, Hiroaki Okudaira, Toshiharu Ishida, Tetsuya Nakatsuka, Yoshiharu Inaba, Asao Nishimura
  • Patent number: 7013564
    Abstract: A method of producing an electronic device by connecting a lead of a semiconductor device with an electrode of a circuit board to form a bonded structure. In the bonded structure, a lead-free Sn—Ag—Bi alloy solder is applied to an electrode through an Sn—Bi alloy layer. The Sn—Bi alloy, preferably, comprises 1 to 20 wt % Bi in order to obtain good wettability of the solder. In order to obtain desirable bonding characteristics having higher reliability in the invention, a copper layer is provided under the Sn—Bi alloy layer thereby obtaining an enough bonding strength.
    Type: Grant
    Filed: October 9, 2001
    Date of Patent: March 21, 2006
    Assignee: Hitachi, Ltd.
    Inventors: Hanae Shimokawa, Tasao Soga, Hiroaki Okudaira, Toshiharu Ishida, Tetsuya Nakatsuka, Yoshiharu Inaba, Asao Nishimura