Patents by Inventor Hanjing Tian

Hanjing Tian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220333011
    Abstract: In one aspect, the disclosure relates to multicolored carbon quantum dot nanoparticles (Cdots), “one-pot” methods of making same starting from coal and using mild reaction conditions, and applications of the same. The disclosed methods are safe and environmentally benign as well as inexpensive. Additionally, the disclosed carbon quantum dot nanoparticles are stable and have tunable properties based on reaction conditions used for their synthesis.
    Type: Application
    Filed: August 28, 2020
    Publication date: October 20, 2022
    Inventors: Hanjing TIAN, Sheng DAI, Jianli HU
  • Patent number: 10974969
    Abstract: In one aspect, the disclosure relates to relates to heterogeneous catalysts useful for the synthesis of ammonia under microwave irradiation, processes for preparing the disclosed heterogeneous catalysts, and processes for synthesizing ammonia using the heterogeneous catalysts with microwave irradiation. In various aspects, the disclosed heterogeneous catalysts comprise: a metal selected from Group 7, Group 8, Group 9, Group 10, Group 11, or combinations thereof; a metal oxide support; and optionally a promoter material. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present disclosure.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: April 13, 2021
    Inventors: Jianli Hu, Dushyant Shekhawat, Christina Wildfire, Robert A. Dagle, Hanjing Tian, Albert Stiegman, Michael Spencer, Victor Abdelsayed, Mark D. Bearden
  • Publication number: 20200079656
    Abstract: In one aspect, the disclosure relates to relates to heterogeneous catalysts useful for the synthesis of ammonia under microwave irradiation, processes for preparing the disclosed heterogeneous catalysts, and processes for synthesizing ammonia using the heterogeneous catalysts with microwave irradiation. In various aspects, the disclosed heterogeneous catalysts comprise: a metal selected from Group 7, Group 8, Group 9, Group 10, Group 11, or combinations thereof; a metal oxide support; and optionally a promoter material. This abstract is intended as a scanning tool for purposes of searching in the particular art and is not intended to be limiting of the present disclosure.
    Type: Application
    Filed: September 11, 2018
    Publication date: March 12, 2020
    Inventors: Jianli Hu, Dushyant Shekhawat, Christina Wildfire, Robert A. Dagle, Hanjing Tian, Albert Stiegman, Michael Spencer, Victor Abdel-Sayed, Mark D. Bearden
  • Patent number: 10513436
    Abstract: Methods, systems and apparatus relate to producing synthesis gas or carbon and hydrogen utilizing a reduced catalyst CuO—Fe2O3. The method comprises introducing CH4; reducing the CuO—Fe2O3 with the introduced CH4, yielding at least a reduced metal catalyst; oxidizing the reduced metal with O2 yielding CuO—Fe2O3; and generating heat that would be used for the hydrogen and carbon or syngas production with the reduced catalyst CuO—Fe2O3.
    Type: Grant
    Filed: December 12, 2016
    Date of Patent: December 24, 2019
    Assignee: U.S. Department of Energy
    Inventors: Ranjani Siriwardane, Hanjing Tian
  • Patent number: 9523499
    Abstract: The disclosure provides an oxygen carrier for a chemical looping cycle, such as the chemical looping combustion of solid carbonaceous fuels, such as coal, coke, coal and biomass char, and the like. The oxygen carrier is comprised of at least 24 weight % (wt %) CuO, at least 10 wt % Fe2O3, and an inert support, and is typically a calcine. The oxygen carrier exhibits a CuO crystalline structure and an absence of iron oxide crystalline structures under XRD crystallography, and provides an improved and sustained combustion reactivity in the temperature range of 600° C.-1000° C. particularly for solid fuels such as carbon and coal.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: December 20, 2016
    Assignee: U.S. Department of Energy
    Inventors: Ranjani V. Siriwardane, Hanjing Tian