Patents by Inventor Hans Barschdorf

Hans Barschdorf has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11886543
    Abstract: A system and computer-implemented method are provided for annotation of image data. A user is enabled to iteratively annotate the image data. An iteration of said iterative annotation comprises generating labels for a current image data part based on user-verified labels of a previous image data part, and enabling the user to verify and correct said generated labels to obtain user-verified labels for the current image data part. The labels for the current image data part are generated by combining respective outputs of a label propagation algorithm and a machine-learned classifier trained on user-verified labels and image data and applied to image data of the current image data part. The machine-learned classifier is retrained using the user-verified labels and the image data of the current image data part to obtain a retrained machine-learned classifier.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: January 30, 2024
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Juergen Weese, Thomas Blaffert, Tom Brosch, Hans Barschdorf
  • Publication number: 20220019860
    Abstract: A system and computer-implemented method are provided for annotation of image data. A user is enabled to iteratively annotate the image data. An iteration of said iterative annotation comprises generating labels for a current image data part based on user-verified labels of a previous image data part, and enabling the user to verify and correct said generated labels to obtain user-verified labels for the current image data part. The labels for the current image data part are generated by combining respective outputs of a label propagation algorithm and a machine-learned classifier trained on user-verified labels and image data and applied to image data of the current image data part. The machine-learned classifier is retrained using the user-verified labels and the image data of the current image data part to obtain a retrained machine-learned classifier.
    Type: Application
    Filed: November 15, 2019
    Publication date: January 20, 2022
    Inventors: JUERGEN WEESE, THOMAS BLAFFERT, TOM BROSCH, HANS BARSCHDORF
  • Patent number: 10872445
    Abstract: The present invention relates to an apparatus for tomosynthesis image reconstruction. It is described to provide (210) a first projection image data set and a second projection image data set acquired after acquisition of the first projection image data set, wherein, the first projection image data set comprises first projection data, and the second projection image data set comprises second projection data, and wherein the first projection image data set is useable for the reconstruction of a tomosynthesis image of at least a region of interest of a body part and wherein the second projection image data set is useable for the reconstruction of a tomosynthesis image of at least the region of interest of the body part. A subset of the first projection data is selected (220).
    Type: Grant
    Filed: November 3, 2017
    Date of Patent: December 22, 2020
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Harald Sepp Heese, Klaus Erhard, Frank Bergner, Ruediger Grewer, Hans Barschdorf, Thomas Buelow
  • Patent number: 10403039
    Abstract: A method and related system (IPS) to support definition of a sub-volume (SV) in an initial image volume (IV).
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: September 3, 2019
    Assignee: Koninklijke Philips N.V.
    Inventors: Dominik Benjamin Kutra, Hans Barschdorf, Thomas Buelow, Kirsten Regina Meetz, Joerg Sabczynski, Stewart Young
  • Publication number: 20190259187
    Abstract: The present invention relates to an apparatus for tomosynthesis image reconstruction. It is described to provide (210) a first projection image data set and a second projection image data set acquired after acquisition of the first projection image data set, wherein, the first projection image data set comprises first projection data, and the second projection image data set comprises second projection data, and wherein the first projection image data set is useable for the reconstruction of a tomosynthesis image of at least a region of interest of a body part and wherein the second projection image data set is useable for the reconstruction of a tomosynthesis image of at least the region of interest of the body part. A subset of the first projection data is selected (220).
    Type: Application
    Filed: November 3, 2017
    Publication date: August 22, 2019
    Inventors: Harald Sepp HEESE, Klaus ERHARD, Frank BERGNER, Ruediger GREWER, Hans BARSCHDORF, Thomas BUELOW
  • Patent number: 10368763
    Abstract: An apparatus, a method and a computer program for visualizing a conduction tract of a heart include adapting a generic heart model to match geometrical data of a patient's heart, where model data, corresponding to the generic heart model and indicating a shape and/or position of the conduction tract, is modified in accordance to the adaptation of the generic heart model. The modification of the model data is further refined based on electrophysiological data of the patient to produce refined model data, and the refined model data is used for generating a visualization of a refined model heart indicating a refined shape and/or refined position of the conduction tract of the patients heart.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: August 6, 2019
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Alexandra Groth, Juergen Weese, Helko Lehmann, Hans Barschdorf
  • Patent number: 10282846
    Abstract: A method is provided for generating a deformable model (300) for segmenting an anatomical structure in a medical image. The anatomical structure comprises a wall. The deformable model (300) is generated such that it comprises, in addition to two surface meshes (320, 360), an intermediate layer mesh (340) for being applied in-between a first surface layer of the wall and a second surface layer of the wall. In generating the intermediate layer mesh (340), the mesh topology of at least part (400) of the intermediate layer mesh is matched to the mesh topology of one of the surface meshes (320, 360), thereby establishing matching mesh topologies. The deformable model (300), as generated, better matches the composition of such walls, thereby providing a more accurate segmentation.
    Type: Grant
    Filed: December 2, 2014
    Date of Patent: May 7, 2019
    Assignee: Koninklijke Philips N.V.
    Inventors: Alexandra Groth, Hannes Nickisch, Frank Michael Weber, Juergen Weese, Hans Barschdorf
  • Publication number: 20170270708
    Abstract: A method and related system (IPS) to support definition of a sub-volume (SV) in an initial image volume (IV).
    Type: Application
    Filed: November 25, 2015
    Publication date: September 21, 2017
    Inventors: DOMINIK BENJAMIN KUTRA, HANS BARSCHDORF, THOMAS BUELOW, KIRSTEN REGINA MEETZ, JOERG Sabczynski, STEWART YOUNG
  • Publication number: 20160379372
    Abstract: A method is provided for generating a deformable model (300) for segmenting an anatomical structure in a medical image. The anatomical structure comprises a wall. The deformable model (300) is generated such that it comprises, in addition to two surface meshes (320, 360), an intermediate layer mesh (340) for being applied in-between a first surface layer of the wall and a second surface layer of the wall. In generating the intermediate layer mesh (340), the mesh topology of at least part (400) of the intermediate layer mesh is matched to the mesh topology of one of the surface meshes (320, 360), thereby establishing matching mesh topologies. The deformable model (300), as generated, better matches the composition of such walls, thereby providing a more accurate segmentation.
    Type: Application
    Filed: December 2, 2014
    Publication date: December 29, 2016
    Inventors: ALEXANDRA GROTH, HANNES NICKISCH, FRANK MICHAEL WEBER, JUERGEN WEESE, HANS BARSCHDORF
  • Patent number: 9367913
    Abstract: A system (100) for segmenting an object in an image adapts a first model for segmenting the object to the image. A feature is extracted from the image based on the adapted first model. A second model is selected for segmenting the object from a plurality of models for segmenting the object, based on the feature extracted from the image. The second model includes additional detail of the object. The second model is utilized based on the adapted first model and/or the feature extracted from the image; the initialized second model is adapted to the image. The features extracted from the image based on the adapted first model help the system (100) to select the second model for segmenting the object from a plurality of models for segmenting the object. The adapted first model and/or the extracted features are also used for initializing the second model.
    Type: Grant
    Filed: September 13, 2011
    Date of Patent: June 14, 2016
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Cristian Lorenz, Hans Barschdorf, Tobias Klinder, Raghed Hanna
  • Publication number: 20150025364
    Abstract: The invention relates to an apparatus, a method and a computer program for visualizing a conduction tract of a heart. In order to provide a visualization which is helpful in avoiding or finding the conduction tract in, for example, an invasive procedure like ablation of heart tissue, a generic heart model is adapted to geometrical data of the patient's heart, wherein model data indicating a shape and/or position of the conduction tract is modifying in accordance to the adaptation. The modification of the model data is further refined based on electrophysiological data and the refined model is used for generating a visualization.
    Type: Application
    Filed: March 1, 2013
    Publication date: January 22, 2015
    Applicant: Koninklijke Philips N.V.
    Inventors: Alexandra Groth, Juergen Weese, Helko Lehmann, Hans Barschdorf
  • Patent number: 8798343
    Abstract: A system for displaying lung ventilation information, the system comprising an input (12) and a processing unit (15). The input being provided for receiving multiple CT images (71) of a lung, each CT image (71) corresponding to one phase of at least two different phases in a respiratory cycle. The processing unit (15) being configured to compare CT images (71) corresponding to different phases in the respiratory cycle for determining a deformation vector field for each phase, to generate for each phase a ventilation image (72) based on the corresponding deformation vector field, to spatially align the ventilation images (72), and to generate for at least one common position (62) in each one of the aligned ventilation images (72), a function (81) of a time course of a ventilation value for said common position (62), each ventilation value in the function (81) being based on the deformation vector fields corresponding to the aligned ventilation images (73).
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: August 5, 2014
    Assignee: Koninklijke Philips N.V.
    Inventors: Sven Kabus, Cristian Lorenz, Nicole Schadewaldt, Roland Opfer, Ingwer Curt Carlsen, Steffen Renisch, Joerg Sabczynski, Hans Barschdorf, Jens Von Berg, Thomas Blaffert, Tobias Klinder
  • Publication number: 20130286013
    Abstract: The invention relates to a system (100) for segmenting an object in an image, comprising a first adapter (110) for adapting a first model for segmenting the object to the image, an analyzer (115) for extracting a feature from the image based on the adapted first model, a selector (120) for selecting a second model for segmenting the object from a plurality of models for segmenting the object, based on the feature extracted from the image, wherein the second model comprises additional detail of the object, an initializer (125) for initializing the second model based on the adapted first model and/or the feature extracted from the image, and a second adapter (130) for adapting the initialized second model to the image. The features extracted from the image based on the adapted first model help the system (100) to select the second model for segmenting the object from a plurality of models for segmenting the object.
    Type: Application
    Filed: September 13, 2011
    Publication date: October 31, 2013
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Cristian Lorenz, Hans Barschdorf, Tobias Klinder, Raghed Hanna
  • Patent number: 8526697
    Abstract: The present invention relates to an apparatus (1) for segmenting an object comprising sub-objects shown in an object image. The apparatus comprises a feature image generation unit (2) for generating a feature image showing features related to intermediate regions between the sub-objects and a segmentation unit (3) for segmenting the sub-objects by using the object image and the feature image. Preferentially, the feature image generation unit (2) is adapted for generating a feature image from the object image. In a further embodiment, the feature image generation unit (2) comprises a feature enhancing unit for enhancing features related to intermediate regions between the sub-objects in the object image.
    Type: Grant
    Filed: February 6, 2009
    Date of Patent: September 3, 2013
    Assignee: Koninklijke Philips N.V.
    Inventors: Thomas Blaffert, Hans Barschdorf, Jens Von Berg, Sebastian Peter Michael Dries, Cristian Lorenz, Rafael Wiemker, Tobias Klinder, Astrid Ruth Franz, Steffen Renisch
  • Patent number: 8233691
    Abstract: The invention relates to a system for adapting a plurality of model meshes to a plurality of image data. The system has a registration unit for registering the plurality of model meshes with the plurality of image data on the basis of a computation of a registration transformation for transforming the plurality of model meshes, and an adaptation unit for adapting the plurality of registered model meshes to the plurality of image data on the basis of a computation of locations of mesh vertices of the plurality of model meshes. The described system is capable of reducing motion artifacts in tomographic images computed from data acquired at a plurality of different cardiac cycle phases.
    Type: Grant
    Filed: August 27, 2007
    Date of Patent: July 31, 2012
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Hans Barschdorf, Jens Von Berg, Michael Harald Kuhn, Cristian Lorenz, Thomas Blaffert
  • Publication number: 20110286652
    Abstract: A system for displaying lung ventilation information, the system comprising an input (12) and a processing unit (15). The input being provided for receiving multiple CT images (71) of a lung, each CT image (71) corresponding to one phase of at least two different phases in a respiratory cycle. The processing unit (15) being configured to compare CT images (71) corresponding to different phases in the respiratory cycle for determining a deformation vector field for each phase, to generate for each phase a ventilation image (72) based on the corresponding deformation vector field, to spatially align the ventilation images (72), and to generate for at least one common position (62) in each one of the aligned ventilation images (72), a function (81) of a time course of a ventilation value for said common position (62), each ventilation value in the function (81) being based on the deformation vector fields corresponding to the aligned ventilation images (73).
    Type: Application
    Filed: January 25, 2010
    Publication date: November 24, 2011
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Sven Kabus, Cristian Lorenz, Nicole Schadewaldt, Roland Opfer, Ingwer Curt Carlsen, Steffen Renisch, Joerg Sabczynski, Hans Barschdorf, Jens Von Berg, Thomas Blaffert, Tobias Klinder
  • Publication number: 20110052018
    Abstract: The present invention relates to an apparatus (1) for segmenting an object comprising sub-objects shown in an object image. The apparatus comprises a feature image generation unit (2) for generating a feature image showing features related to intermediate regions between the sub-objects and a segmentation unit (3) for segmenting the sub-objects by using the object image and the feature image. Preferentially, the feature image generation unit (2) is adapted for generating a feature image from the object image. In a further embodiment, the feature image generation unit (2) comprises a feature enhancing unit for enhancing features related to intermediate regions between the sub-objects in the object image.
    Type: Application
    Filed: February 6, 2009
    Publication date: March 3, 2011
    Applicant: Koninklijke Philips Electronics N.V.
    Inventors: Thomas Blaffert, Hans Barschdorf, Jans Von Berg, Sebastian Peter Michael Dries, Cristian Lorenz, Rafael Wiemker, Tobias Klinder, Astrid Ruth Franz, Steffen Renisch
  • Publication number: 20100246910
    Abstract: This invention relates to a method and image processing apparatus for automatically correcting mis-orientation of medical images. One or more image processing software modules are used to extract (101) anatomical areas from the medical images. It is determined (103) whether the extracted anatomical areas correspond to reference anatomical areas, but the reference anatomical areas have associated thereto data indicating the orientation of the reference anatomical areas. If the extracted anatomical areas correspond with the reference anatomical areas, the true orientation of the extracted anatomical areas is determined (105) by realigning the medical image until the orientation of the extracted anatomical areas corresponds to the orientation of the reference anatomical areas.
    Type: Application
    Filed: November 10, 2008
    Publication date: September 30, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N.V.
    Inventors: Rafael Wiemker, Thomas Buelow, Hans Barschdorf, Kirsten Meetz, Heinrich Schulz
  • Publication number: 20100121655
    Abstract: A patient data record is described comprising a mean model representative of the patient and further comprises at least one shape model to represent data concerning the patient, in which the said mean model comprises at least one region and the said shape model comprises at least one sub-section, and in which the at least one sub-section of the shape model is linked to the equivalent region of the mean model. This has the advantage of allowing greater structure to the patient record. Further a system is described to present patient data upon queries generated by a user and arranged to access the claimed patient data record, and which is further arranged to provide access to information in the sub-section of the shape model when a query generated by the user accesses the equivalent region of the mean model. This system allows full use of the improved patient data record.
    Type: Application
    Filed: November 22, 2007
    Publication date: May 13, 2010
    Applicant: KONINKLIJKE PHILIPS ELECTRONICS N. V.
    Inventors: Christian Lorenz, Hans Barschdorf, Jens Von Berg, Thomas Blaffert, Sebastian P. M. Dries, Sven Kabus
  • Patent number: 7656996
    Abstract: The invention relates to a method and a device for determining the distribution of an X-ray fluorescence (XRF) marker (16) in a body volume (14). The body volume (14) is irradiated with a beam of rays (12) from an X-ray source (10) with a first ray component with a quantum energy just above and a second ray component with a quantum energy just below the K-edge of the XRF marker (16). Secondary radiation emitted from the body volume (14) is detected in a location-resolved way by a detector (30). To separate the X-ray fluorescence components in the secondary radiation from background radiation, the body volume is irradiated for a second time with a beam of rays from which the first ray component has been substantially removed by a filter (22) made from the material of the XRF marker.
    Type: Grant
    Filed: February 11, 2005
    Date of Patent: February 2, 2010
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Geoffrey Harding, Gerhard Martens, Hans Barschdorf, Bernd Schweizer