Patents by Inventor Hans Hung

Hans Hung has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11994558
    Abstract: An electronic system test method, comprising: (a) inputting a victim test pattern to a victim signal path of a target electronic system and simultaneously inputting at least one aggressor test pattern to at least one aggressor signal path of the target electronic system, according to a major set of test patterns comprising a plurality of minor set of test patterns; (b) acquiring a output response corresponding to the step (a); and (c) after changing the victim test pattern or the aggressor test pattern, and after repeating the step (a) and the step (b) until all of the major test patterns set are used thereby acquiring a plurality of the output responses, determining a combination level according to the output responses. The victim test pattern is an X bit pattern and the aggressor test pattern is a Y bit pattern, X and Y are positive integers larger than or equal to 3.
    Type: Grant
    Filed: November 1, 2022
    Date of Patent: May 28, 2024
    Assignee: Realtek Semiconductor Corp.
    Inventors: Han-Yun Tsai, Shih-Hung Wang, Ting-Ying Wu
  • Publication number: 20240170381
    Abstract: In some implementations, one or more semiconductor processing tools may form a metal cap on a metal gate. The one or more semiconductor processing tools may form one or more dielectric layers on the metal cap. The one or more semiconductor processing tools may form a recess to the metal cap within the one or more dielectric layers. The one or more semiconductor processing tools may perform a bottom-up deposition of metal material on the metal cap to form a metal plug within the recess and directly on the metal cap.
    Type: Application
    Filed: February 1, 2024
    Publication date: May 23, 2024
    Inventors: Chun-Hsien HUANG, Peng-Fu HSU, Yu-Syuan CAI, Min-Hsiu HUNG, Chen-Yuan KAO, Ken-Yu CHANG, Chun-I TSAI, Chia-Han LAI, Chih-Wei CHANG, Ming-Hsing TSAI
  • Patent number: 11984357
    Abstract: The present application discloses a semiconductor structure. The semiconductor structure includes: a substrate, the substrate being provided with a conductive structure; a first lower electrode and a second lower electrode sequentially stacked, the first lower electrode being located between the second lower electrode and the substrate, and the first lower electrode being electrically connected to the conductive structure; a first dielectric layer and a first upper electrode, the first dielectric layer covering a sidewall surface of the first lower electrode, and the first upper electrode being located on one side of the first dielectric layer away from the first lower electrode; and a second dielectric layer and a second upper electrode, the second dielectric layer covering an inner wall and a bottom surface of the second lower electrode, and the second upper electrode filling the recess of the second lower electrode.
    Type: Grant
    Filed: October 19, 2021
    Date of Patent: May 14, 2024
    Assignee: CHANGXIN MEMORY TECHNOLOGIES, INC.
    Inventors: BingYu Zhu, Hai-Han Hung, Yin-Kuei Yu
  • Patent number: 11980694
    Abstract: A sterilization apparatus for a portable electronic device including a cabinet and a carrier is provided. The carrier includes a base slidably disposed on the cabinet, multiple first positioning elements and multiple second positioning elements disposed in parallel on the base, multiple sterilization light sources corresponding to the second positioning elements and multiple pressure sensors disposed in parallel in the base. The base is configured to carry at least one portable electronic device. One second positioning element is disposed between any two adjacent first positioning elements, and any first positioning element and any second positioning element adjacent to each other are separated by a positioning space. The pressure sensors are respectively located in the positioning spaces. One sterilization light source is disposed between any two adjacent pressure sensors, and the pressure sensors are configured to sense a pressure from the portable electronic device.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: May 14, 2024
    Assignee: COMPAL ELECTRONICS, INC.
    Inventors: Yi-Hung Chen, Chih-Wen Chiang, Yun-Tung Pai, Yen-Hua Hsiao, Yao-Kuang Su, Yi-Hsuan Lin, Han-Sheng Siao
  • Patent number: 11982866
    Abstract: An optical element driving mechanism is provided and includes a fixed assembly, a movable assembly, a driving assembly and a stopping assembly. The fixed assembly has a main axis. The movable assembly is configured to connect an optical element, and the movable assembly is movable relative to the fixed assembly. The driving assembly is configured to drive the movable assembly to move relative to the fixed assembly. The stopping assembly is configured to limit the movement of the movable assembly relative to the fixed assembly within a range of motion.
    Type: Grant
    Filed: December 15, 2022
    Date of Patent: May 14, 2024
    Assignee: TDK TAIWAN CORP.
    Inventors: Chao-Chang Hu, Liang-Ting Ho, Chen-Er Hsu, Yi-Liang Chan, Fu-Lai Tseng, Fu-Yuan Wu, Chen-Chi Kuo, Ying-Jen Wang, Wei-Han Hsia, Yi-Hsin Tseng, Wen-Chang Lin, Chun-Chia Liao, Shou-Jen Liu, Chao-Chun Chang, Yi-Chieh Lin, Shang-Yu Hsu, Yu-Huai Liao, Shih-Wei Hung, Sin-Hong Lin, Kun-Shih Lin, Yu-Cheng Lin, Wen-Yen Huang, Wei-Jhe Shen, Chih-Shiang Wu, Sin-Jhong Song, Che-Hsiang Chiu, Sheng-Chang Lin
  • Publication number: 20240153564
    Abstract: Systems, methods, circuits, and apparatus for managing multi-block operations in memory devices are provided. In one aspect, a memory device includes a memory cell array including at least two blocks, a bit line coupled to a string of memory cells in each of the at least two blocks respectively, a common source line (CSL) coupled to strings coupled to the bit line in the at least two blocks, and a circuitry configured to perform a multi-block operation in the memory cell array by at least one of: forming a first current path from the bit line through the strings to the CSL coupled to a ground to discharge a capacitor associated with the bit line that is pre-charged, or forming a second current path from the CSL coupled to a supply voltage through the strings to the bit line to charge the capacitor that is pre-discharged.
    Type: Application
    Filed: November 7, 2022
    Publication date: May 9, 2024
    Applicant: Macronix International Co., Ltd.
    Inventors: Wei-Han Chen, Chun-Hsiung Hung
  • Publication number: 20240153901
    Abstract: A first and second semiconductor device are bonded together using a bonding contact pad embedded within a bonding dielectric layer of the first semiconductor device and at least one bonding via embedded within a bonding dielectric layer of the second semiconductor device. The bonding contact pad extends a first dimension in a first direction perpendicular to the major surface of the first semiconductor device and a second dimension in a second direction parallel to the plane of the first semiconductor wafer, the second dimension being at least twice the first dimension. The bonding via extends a third dimension in the first direction and a fourth dimension in the second direction, the third dimension being at least twice the first dimension. The bonding contact pad and bonding via may be at least partially embedded in respective bonding dielectric layers in respective topmost dielectric layers of respective stacked interconnect layers.
    Type: Application
    Filed: January 9, 2023
    Publication date: May 9, 2024
    Inventors: Yu-Hung Lin, Han-Jong Chia, Wei-Ming Wang, Kuo-Chung Yee, Chen Chen, Shih-Peng Tai
  • Publication number: 20240145421
    Abstract: Provided are a passivation layer for forming a semiconductor bonding structure, a sputtering target making the same, a semiconductor bonding structure and a semiconductor bonding process. The passivation layer is formed on a bonding substrate by sputtering the sputtering target; the passivation layer and the sputtering target comprise a first metal, a second metal or a combination thereof. The bonding substrate comprises a third metal. Based on a total atom number of the surface of the passivation layer, O content of the surface of the passivation layer is less than 30 at %; the third metal content of the surface of the passivation layer is less than or equal to 10 at %. The passivation layer has a polycrystalline structure. The semiconductor bonding structure sequentially comprises a first bonding substrate, a bonding layer and a second bonding substrate: the bonding layer is mainly formed by the passivation layer and the third metal.
    Type: Application
    Filed: October 27, 2023
    Publication date: May 2, 2024
    Inventors: Kuan-Neng CHEN, Zhong-Jie HONG, Chih-I CHO, Ming-Wei WENG, Chih-Han CHEN, Chiao-Yen WANG, Ying-Chan HUNG, Hong-Yi WU, CHENG-YEN HSIEH
  • Publication number: 20240142664
    Abstract: Two types of blue light blocking contact lenses are provided and are formed by curing different compositions. The first composition includes a blue light blocking component formed by mixing or reacting a first hydrophilic monomer and a yellow dye, a first colored dye component formed by mixing or reacting a second hydrophilic monomer and a first colored dye, at least one third hydrophilic monomer, a crosslinker, and an initiator. The first colored dye includes a green dye, a cyan dye, a blue dye, an orange dye, a red dye, a black dye, or combinations thereof. The second composition includes a blue light blocking component, at least one hydrophilic monomer, a crosslinker, and an initiator. The blue light blocking component is formed by mixing or reacting glycerol monomethacrylate and a yellow dye. Further, methods for preparing the above contact lenses are provided.
    Type: Application
    Filed: February 12, 2023
    Publication date: May 2, 2024
    Inventors: Han-Yi CHANG, Chun-Han CHEN, Tsung-Kao HSU, Wei-che WANG, Yu-Hung LIN, Wan-Ying GAO, Li-Hao LIU
  • Patent number: 11955371
    Abstract: A method for preparing a semiconductor device includes: providing a semiconductor substrate, in which a trench is formed on the semiconductor substrate, a filling layer is formed in the trench, and a void is formed in the filling layer; removing a portion of the filling layer to expose the void; forming a plug, in which the plug is configured to plug the void and extends into the void by at least a preset distance; and removing a portion of the filling layer and remaining the plug with at least a preset height until the filling layer reaches a preset thickness to form a contact hole.
    Type: Grant
    Filed: August 8, 2021
    Date of Patent: April 9, 2024
    Assignee: CHANGXIN MEMORY TECHNOLOGIES, INC.
    Inventors: Jingwen Lu, Hai-Han Hung, Meng-Cheng Chen
  • Publication number: 20240113061
    Abstract: An electronic device package includes a circuit layer, a first semiconductor die, a second semiconductor die, a plurality of first conductive structures and a second conductive structure. The first semiconductor die is disposed on the circuit layer. The second semiconductor die is disposed on the first semiconductor die, and has an active surface toward the circuit layer. The first conductive structures are disposed between a first region of the second semiconductor die and the first semiconductor die, and electrically connecting the first semiconductor die to the second semiconductor die. The second conductive structure is disposed between a second region of the second semiconductor die and the circuit layer, and electrically connecting the circuit layer to the second semiconductor die.
    Type: Application
    Filed: December 5, 2023
    Publication date: April 4, 2024
    Applicant: Advanced Semiconductor Engineering, Inc.
    Inventors: Mei-Ju LU, Chi-Han CHEN, Chang-Yu LIN, Jr-Wei LIN, Chih-Pin HUNG
  • Patent number: 11931855
    Abstract: Embodiments of the present disclosure generally relate to planarization of surfaces on substrates and on layers formed on substrates. More specifically, embodiments of the present disclosure relate to planarization of surfaces on substrates for advanced packaging applications, such as surfaces of polymeric material layers. In one implementation, the method includes mechanically grinding a substrate surface against a polishing surface in the presence of a grinding slurry during a first polishing process to remove a portion of a material formed on the substrate; and then chemically mechanically polishing the substrate surface against the polishing surface in the presence of a polishing slurry during a second polishing process to reduce any roughness or unevenness caused by the first polishing process.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: March 19, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Han-Wen Chen, Steven Verhaverbeke, Tapash Chakraborty, Prayudi Lianto, Prerna Sonthalia Goradia, Giback Park, Chintan Buch, Pin Gian Gan, Alex Hung
  • Publication number: 20240088054
    Abstract: A carrier structure is provided with a plurality of package substrates connected via connecting sections, and a functional element and a groove are formed on the connecting section, such that the groove is located between the package substrate and the functional element. Therefore, when a cladding layer covering a chip is formed on the package substrate, the groove can accommodate a glue material overflowing from the cladding layer to prevent the glue material from contaminating the functional element.
    Type: Application
    Filed: December 8, 2022
    Publication date: March 14, 2024
    Applicant: SILICONWARE PRECISION INDUSTRIES CO., LTD.
    Inventors: Shu-Ting LAI, Chiu-Lien LI, Che-Min SU, Chun-Huan HUNG, Mu-Hung HSIEH, Cheng-Han YAO, Fajanilan Darcyjo Directo, Cheng-Liang HSU
  • Publication number: 20240087945
    Abstract: Semiconductor processing apparatuses and methods are provided in which an electrostatic discharge (ESD) prevention layer is utilized to prevent or reduce ESD events from occurring between a semiconductor wafer and one or more components of the apparatuses. In some embodiments, a semiconductor processing apparatus includes a wafer handling structure that is configured to support a semiconductor wafer during processing of the semiconductor wafer. The apparatus further includes an ESD prevention layer on the wafer handling structure. The ESD prevention layer includes a first material and a second material, and the second material has an electrical conductivity that is greater than an electrical conductivity of the first material.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 14, 2024
    Inventors: Tsai-Hao HUNG, Ping-Cheng KO, Tzu-Yang LIN, Fang-Yu LIU, Cheng-Han WU
  • Patent number: 11929314
    Abstract: In some implementations, one or more semiconductor processing tools may form a metal cap on a metal gate. The one or more semiconductor processing tools may form one or more dielectric layers on the metal cap. The one or more semiconductor processing tools may form a recess to the metal cap within the one or more dielectric layers. The one or more semiconductor processing tools may perform a bottom-up deposition of metal material on the metal cap to form a metal plug within the recess and directly on the metal cap.
    Type: Grant
    Filed: March 12, 2021
    Date of Patent: March 12, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Hsien Huang, Peng-Fu Hsu, Yu-Syuan Cai, Min-Hsiu Hung, Chen-Yuan Kao, Ken-Yu Chang, Chun-I Tsai, Chia-Han Lai, Chih-Wei Chang, Ming-Hsing Tsai
  • Patent number: 11916022
    Abstract: Various embodiments of the present disclosure are directed towards a semiconductor processing system including an overlay (OVL) shift measurement device. The OVL shift measurement device is configured to determine an OVL shift between a first wafer and a second wafer, where the second wafer overlies the first wafer. A photolithography device is configured to perform one or more photolithography processes on the second wafer. A controller is configured to perform an alignment process on the photolithography device according to the determined OVL shift. The photolithography device performs the one or more photolithography processes based on the OVL shift.
    Type: Grant
    Filed: June 7, 2022
    Date of Patent: February 27, 2024
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yeong-Jyh Lin, Ching I Li, De-Yang Chiou, Sz-Fan Chen, Han-Jui Hu, Ching-Hung Wang, Ru-Liang Lee, Chung-Yi Yu
  • Patent number: 11917806
    Abstract: The present disclosure provides a method of manufacturing a semiconductor structure and a semiconductor structure, relating to the technical field of semiconductors. The method of manufacturing a semiconductor structure includes: providing a substrate; forming multiple active pillars arranged in an array on the substrate, where an outer surface layer of each of the active pillars has a concave-convex surface; forming a gate oxide layer on the substrate, where a filling region is formed between two adjacent active pillars in the same row; forming a word line and a first dielectric layer in the filling region; exposing a top surface of each of the active pillars; forming a contact layer on the top surface of each of the active pillars; and forming a capacitor structure on the contact layer.
    Type: Grant
    Filed: November 1, 2021
    Date of Patent: February 27, 2024
    Assignee: CHANGXIN MEMORY TECHNOLOGIES, INC.
    Inventors: Xiaoling Wang, Hai-Han Hung
  • Patent number: 11917923
    Abstract: A magnetoresistive random access memory (MRAM) structure, including a substrate and multiple MRAM cells on the substrate, wherein the MRAM cells are arranged in a memory region adjacent to a logic region. An ultra low-k (ULK) layer covers the MRAM cells, wherein the surface portion of ultra low-k layer is doped with fluorine, and dents are formed on the surface of ultra low-k layer at the boundaries between the memory region and the logic region.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: February 27, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Hui-Lin Wang, Ching-Hua Hsu, Si-Han Tsai, Shun-Yu Huang, Chen-Yi Weng, Ju-Chun Fan, Che-Wei Chang, Yi-Yu Lin, Po-Kai Hsu, Jing-Yin Jhang, Ya-Jyuan Hung
  • Patent number: 11910595
    Abstract: The invention discloses a semiconductor memory device, which is characterized by comprising a substrate defining a cell region and an adjacent periphery region, a plurality of bit lines are arranged on the substrate and arranged along a first direction, each bit line comprises a conductive part, and the bit line comprises four sidewalls, and a spacer surrounds the four sidewalls of the bit line, the spacer comprises two short spacers covering two ends of the conductive part, two long spacers covering the two long sides of the conductive part, and a plurality of storage node contact isolations located between any two adjacent bit lines, at least a part of the storage node contact isolations cover directly above the spacers. The structure of the invention can improve the electrical isolation effect, preferably avoid leakage current and improve the quality of components.
    Type: Grant
    Filed: August 23, 2021
    Date of Patent: February 20, 2024
    Assignee: Fujian Jinhua Integrated Circuit Co., Ltd.
    Inventors: Yu-Cheng Tung, Janbo Zhang, Shih-Han Hung, Li-Wei Feng
  • Publication number: 20240021548
    Abstract: A semiconductor device and method of manufacturing that includes a first etch stop layer and a second etch stop layer to prevent delamination and damage to underlying components. A first passivation layer and a second passivation layer are disposed on a substrate, with a metal pad exposed through the passivation layers and contacting a top metal component of the substrate. The first etch stop layer is then formed on the second passivation layer and the metal pad. A third passivation layer is then formed on the substrate with an opening to the metal pad, which is covered by the first etch stop layer. The second etch stop layer is then formed on the third passivation layer and in the opening on the second etch stop layer. A bottom metal film/conductive component is then formed on the second etch stop layer, photoresist is applied, and wet etching is performed. The metal pad is protected from damage caused by delamination of the second etch stop layer by the first etch stop layer.
    Type: Application
    Filed: July 13, 2022
    Publication date: January 18, 2024
    Inventors: Wei-Chun Liao, Guo-Zhou Huang, Huan-Kuan Su, Yu-Hong Pan, Wen Han Hung, Ling-Sung Wang