Patents by Inventor Hao-Chiang Cheng

Hao-Chiang Cheng has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240153842
    Abstract: A semiconductor structure includes a die embedded in a molding material, the die having die connectors on a first side; a first redistribution structure at the first side of the die, the first redistribution structure being electrically coupled to the die through the die connectors; a second redistribution structure at a second side of the die opposing the first side; and a thermally conductive material in the second redistribution structure, the die being interposed between the thermally conductive material and the first redistribution structure, the thermally conductive material extending through the second redistribution structure, and the thermally conductive material being electrically isolated.
    Type: Application
    Filed: January 4, 2024
    Publication date: May 9, 2024
    Inventors: Hao-Jan Pei, Wei-Yu Chen, Chia-Shen Cheng, Chih-Chiang Tsao, Cheng-Ting Chen, Chia-Lun Chang, Chih-Wei Lin, Hsiu-Jen Lin, Ching-Hua Hsieh, Chung-Shi Liu
  • Publication number: 20240105642
    Abstract: A method of manufacturing a package structure at least includes the following steps. An encapsulant laterally is formed to encapsulate the die and the plurality of through vias. A plurality of first connectors are formed to electrically connect to first surfaces of the plurality of through vias. A warpage control material is formed over the die, wherein the warpage control material is disposed to cover an entire surface of the die. A protection material is formed over the encapsulant and around the plurality of first connectors and the warpage control material. A coefficient of thermal expansion of the protection material is less than a coefficient of thermal expansion of the encapsulant.
    Type: Application
    Filed: November 29, 2023
    Publication date: March 28, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hao-Jan Pei, Ching-Hua Hsieh, Hsiu-Jen Lin, Wei-Yu Chen, Chia-Shen Cheng, Chih-Chiang Tsao, Jen-Jui Yu, Cheng-Shiuan Wong
  • Publication number: 20240088062
    Abstract: A package structure includes a die, an encapsulant laterally encapsulating the die, a warpage control material disposed over the die, and a protection material disposed over the encapsulant and around the warpage control material. A coefficient of thermal expansion of the protection material is less than a coefficient of thermal expansion of the encapsulant.
    Type: Application
    Filed: November 23, 2023
    Publication date: March 14, 2024
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hao-Jan Pei, Ching-Hua Hsieh, Hsiu-Jen Lin, Wei-Yu Chen, Chia-Shen Cheng, Chih-Chiang Tsao, Jen-Jui Yu, Cheng-Shiuan Wong
  • Publication number: 20230314736
    Abstract: The present disclosure is generally directed to an optical transceiver housing for use in an optical transceiver module with at least one vapor chamber integrated into the transceiver housing. In more detail, the transceiver housing includes at least first and second housing portions on opposite sides and forming a compartment defined by one or more inner surfaces therein. The vapor chamber includes a heat input side and a heat output side on opposite sides of the vapor chamber. An outer wall of at least one of the housing portions may be defined at least in part by the heat output side of the vapor chamber such that the heat output side is exposed to outside of the transceiver housing for transferring heat from inside to outside the optical transceiver module.
    Type: Application
    Filed: April 4, 2022
    Publication date: October 5, 2023
    Inventors: Hao-Chiang CHENG, Kai-Sheng LIN, Kevin LIU
  • Patent number: 11698497
    Abstract: An optical fiber holder is disclosed herein that includes at least one confinement slot for routing intermediate optical fibers within a housing of an optical assembly module, and preferably, a plurality of confinement slots for maintaining a target/nominal fiber bending radius for one or more intermediate optical fibers within the housing. Preferably, the optical fiber holder is disposed within the housing of an optical subassembly between an optical component, e.g., a TOSA arrangement and/or ROSA arrangement, and optical coupling receptacles, e.g., LC coupling receptacles, for optically coupling with external fibers for sending and/or receiving optical signals.
    Type: Grant
    Filed: March 4, 2021
    Date of Patent: July 11, 2023
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Hao-Chiang Cheng, Kai-Sheng Lin
  • Publication number: 20230188241
    Abstract: The present disclosure is generally directed to a holder that can be used to couple to and optically align an optical component with, for instance, an associated light path to launch or receive optical channel wavelengths along the same. The holder preferably includes a receptacle to couple to the optical component and a mounting section enables the holder to be securely coupled to a substrate in a manner that minimizes or otherwise reduces introducing component shift and resulting optical misalignment.
    Type: Application
    Filed: December 15, 2021
    Publication date: June 15, 2023
    Inventors: Kai-Sheng LIN, Hao-Chiang CHENG, Ziliang CAI
  • Patent number: 11474311
    Abstract: A parabolic reflector device (also referred to herein as a parabolic lens device) is disclosed which includes a plurality of parabolic lens members and a mirror member which couple together and collectively provide a light-transmissive structure for multiplexing or demultiplexing of an optical signal. The parabolic reflector device can be implemented within optical subassembly modules to support operations of transmitter optical subassemblies (TOSAs) and/or receiver optical subassemblies (ROSAs).
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: October 18, 2022
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kai-Sheng Lin, Hao-Chiang Cheng, Ziliang Cai
  • Publication number: 20220283390
    Abstract: An optical fiber holder is disclosed herein that includes at least one confinement slot for routing intermediate optical fibers within a housing of an optical assembly module, and preferably, a plurality of confinement slots for maintaining a target/nominal fiber bending radius for one or more intermediate optical fibers within the housing. Preferably, the optical fiber holder is disposed within the housing of an optical subassembly between an optical component, e.g., a TOSA arrangement and/or ROSA arrangement, and optical coupling receptacles, e.g., LC coupling receptacles, for optically coupling with external fibers for sending and/or receiving optical signals.
    Type: Application
    Filed: March 4, 2021
    Publication date: September 8, 2022
    Inventors: Hao-Chiang CHENG, Kai-Sheng LIN
  • Patent number: 11411650
    Abstract: The present disclosure is generally directed to a component bridge that couples to a feedthrough device to provide additional component mounting surface area within a TOSA housing, and preferably, within a hermetically-sealed TOSA housing. The component bridge includes a body that defines a component mounting surface to couple to electrical components, e.g., one or more filtering capacitors, and a notched portion to provide an accommodation groove. The component bridge includes at least one projection/leg for coupling to a mounting surface of a feedthrough device. The accommodation groove of the component bridge allows for other electrical components, e.g., RF traces, to be patterned/disposed on to the mounting surface and extend at least partially through the accommodation groove while remaining electrically isolated from the same. Accordingly, the component bridge further increases available component mounting surface area for existing feedthrough devices without necessity of re-design and/or modification.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: August 9, 2022
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kai-Sheng Lin, Kevin Liu, Hao-Chiang Cheng
  • Patent number: 11320598
    Abstract: The present disclosure is generally directed to an optical demultiplexer for use in an optical transceiver module having a truncated profile/shape to increase tolerance and accommodate adjacent optical components. In more detail, the optical demultiplexer comprises a body with at least one truncated corner at the input end. The at least one truncated corner allows the optical demultiplexer to be disposed/mounted, e.g., directly, on a densely populated transceiver substrate, e.g., a printed circuit board (PBC), and provide additional tolerance/space for mounting of circuitry and/or components within the region that would normally be occupied by corner(s) of the optical demultiplexer body. The at least one truncated corner may be introduced in a post-production step, e.g., via cut & polishing, or introduced during formation of the optical demultiplexer using, for instance, photolithography techniques.
    Type: Grant
    Filed: November 24, 2019
    Date of Patent: May 3, 2022
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kai-Sheng Lin, Hao-Chiang Cheng, Ziliang Cai
  • Publication number: 20210234612
    Abstract: The present disclosure is generally directed to a component bridge that couples to a feedthrough device to provide additional component mounting surface area within a TOSA housing, and preferably, within a hermetically-sealed TOSA housing. The component bridge includes a body that defines a component mounting surface to couple to electrical components, e.g., one or more filtering capacitors, and a notched portion to provide an accommodation groove. The component bridge includes at least one projection/leg for coupling to a mounting surface of a feedthrough device. The accommodation groove of the component bridge allows for other electrical components, e.g., RF traces, to be patterned/disposed on to the mounting surface and extend at least partially through the accommodation groove while remaining electrically isolated from the same. Accordingly, the component bridge further increases available component mounting surface area for existing feedthrough devices without necessity of re-design and/or modification.
    Type: Application
    Filed: January 24, 2020
    Publication date: July 29, 2021
    Inventors: Kai-Sheng LIN, Kevin LIU, Hao-Chiang CHENG
  • Publication number: 20210211198
    Abstract: The present disclosure is generally directed to a monitor photodiode (MPD) submount for use in optical transceivers that includes a body with a conductive trace pattern disposed on multiple surfaces of the same to allow for vertical mounting of an associated MPD and simplified electrical interconnection with TOSA circuitry without the necessity of electrical interconnection. The MPD submount includes a body defined by a plurality of sidewalls. At least one surface of the body provides a mounting surface for coupling to and supporting an MPD. The MPD submount further includes a conductive trace pattern that provides at least one conductive path that is disposed on the mounting surface and on at least one adjoining sidewall. The portion of the at least one conductive path disposed on the adjoining sidewall extends substantially transverse relative to the surface defining the transceiver/transmitter substrate when the MPD submount is coupled to the same.
    Type: Application
    Filed: January 8, 2020
    Publication date: July 8, 2021
    Inventors: Kai-Sheng LIN, Hao-Chiang CHENG, Hang XIE
  • Patent number: 11054592
    Abstract: The present disclosure is generally directed to a housing for use with optical transceivers or transmitters that includes integrated heatsinks with a graphene coating to increase thermal dissipation during operation. In more detail, an embodiment of the present disclosures includes a housing that defines at least first and second sidewalls and a cavity disposed therebetween. The first and/or second sidewalls can include integrated heatsinks to dissipate heat generated by optical components, e.g., laser diodes, laser diode drivers, within the cavity of the housing. The integrated heatsinks can include at least one layer of graphene disposed thereon to increase thermal performance, and in particular, to decrease thermal resistance of the heatsink and promote heat dissipation.
    Type: Grant
    Filed: November 24, 2019
    Date of Patent: July 6, 2021
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kai-Sheng Lin, Hao-Chiang Cheng, Ziliang Cai
  • Patent number: 11057112
    Abstract: The present disclosure is generally directed to a monitor photodiode (MPD) submount for use in optical transceivers that includes a body with a conductive trace pattern disposed on multiple surfaces of the same to allow for vertical mounting of an associated MPD and simplified electrical interconnection with TOSA circuitry without the necessity of electrical interconnection. The MPD submount includes a body defined by a plurality of sidewalls. At least one surface of the body provides a mounting surface for coupling to and supporting an MPD. The MPD submount further includes a conductive trace pattern that provides at least one conductive path that is disposed on the mounting surface and on at least one adjoining sidewall. The portion of the at least one conductive path disposed on the adjoining sidewall extends substantially transverse relative to the surface defining the transceiver/transmitter substrate when the MPD submount is coupled to the same.
    Type: Grant
    Filed: January 8, 2020
    Date of Patent: July 6, 2021
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kai-Sheng Lin, Hao-Chiang Cheng, Hang Xie
  • Publication number: 20210157074
    Abstract: The present disclosure is generally directed to a housing for use with optical transceivers or transmitters that includes integrated heatsinks with a graphene coating to increase thermal dissipation during operation. In more detail, an embodiment of the present disclosures includes a housing that defines at least first and second sidewalls and a cavity disposed therebetween. The first and/or second sidewalls can include integrated heatsinks to dissipate heat generated by optical components, e.g., laser diodes, laser diode drivers, within the cavity of the housing. The integrated heatsinks can include at least one layer of graphene disposed thereon to increase thermal performance, and in particular, to decrease thermal resistance of the heatsink and promote heat dissipation.
    Type: Application
    Filed: November 24, 2019
    Publication date: May 27, 2021
    Inventors: Kai-Sheng LIN, Hao-Chiang CHENG, Ziliang CAI
  • Publication number: 20210157058
    Abstract: The present disclosure is generally directed to an optical demultiplexer for use in an optical transceiver module having a truncated profile/shape to increase tolerance and accommodate adjacent optical components. In more detail, the optical demultiplexer comprises a body with at least one truncated corner at the input end. The at least one truncated corner allows the optical demultiplexer to be disposed/mounted, e.g., directly, on a densely populated transceiver substrate, e.g., a printed circuit board (PBC), and provide additional tolerance/space for mounting of circuitry and/or components within the region that would normally be occupied by corner(s) of the optical demultiplexer body. The at least one truncated corner may be introduced in a post-production step, e.g., via cut & polishing, or introduced during formation of the optical demultiplexer using, for instance, photolithography techniques.
    Type: Application
    Filed: November 24, 2019
    Publication date: May 27, 2021
    Inventors: Kai-Sheng LIN, Hao-Chiang CHENG, Ziliang CAI
  • Patent number: 10948671
    Abstract: The present disclosure is generally directed to a multi-channel TOSA arrangement with a housing that utilizes a feedthrough device with at least one integrated mounting surface to reduce the overall dimensions of the housing. The housing includes a plurality of sidewalls that define a hermetically-sealed cavity therebetween. The feedthrough device includes a first end disposed in the hermetically-sealed cavity of the housing and a second end extending from the cavity away from the housing. The feedthrough device provides the at least one integrated mounting surface proximate the first end within the hermetically-sealed cavity. At least a first laser diode driver (LDD) chip mounts to the at least one integrated mounting surface of the feedthrough device. A plurality of laser arrangements are also disposed in the hermetically-sealed cavity proximate the first LDD chip and mount to, for instance, a LD submount supported by a thermoelectric cooler.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: March 16, 2021
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kai-Sheng Lin, Kevin Liu, Hao-Chiang Cheng
  • Patent number: 10884201
    Abstract: The present disclosure is generally directed to an on-board ROSA arrangement where a fiber receptacle element, optical components such as optical de-multiplexer (e.g., an arrayed waveguide grating (AWG)), turning mirror, photodiodes and light receiving chip are mounted to a common substrate. The fiber receptacle element includes a body that defines a slot to at least partially receive an end of the substrate and mount thereto. The body of the fiber receptacle further includes an aperture that extends through the body to receive an optical fiber and/or associated connector and align the same with ROSA components mounted on a surface of the substrate. The fiber receptacle body may be solid, e.g., formed from a single, monolithic piece of material, and may be manufactured from metal, plastic or other suitably rigid material.
    Type: Grant
    Filed: August 2, 2018
    Date of Patent: January 5, 2021
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kevin Liu, Kai-Sheng Lin, Hao-Chiang Cheng
  • Patent number: 10859775
    Abstract: In general, the present disclosure is directed to an optical turning mirror for receiving channel wavelengths along a first optical path and reflecting the same towards a fiber or photodetector (PD) without the necessity of disposing a highly reflective layer to increase reflectivity. In more detail, the optical turning mirror includes a substantially transparent body, e.g., capable of passing at least 80% of incident wavelengths, that defines an input region with integrated focus lens(es) for receiving channel wavelengths along a first optical path and a reflective surface disposed opposite the input region to direct/launch received channel wavelengths along a second optical path towards an output interface having an angled light-transmissive surface, with the second optical path extending substantially transverse relative to the first optical path.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: December 8, 2020
    Assignee: Applied Optoelectronics, Inc.
    Inventors: Kai-Sheng Lin, Ziliang Cai, Hao-Chiang Cheng
  • Publication number: 20200285008
    Abstract: The present disclosure is generally directed to a multi-channel TOSA arrangement with a housing that utilizes a feedthrough device with at least one integrated mounting surface to reduce the overall dimensions of the housing. The housing includes a plurality of sidewalls that define a hermetically-sealed cavity therebetween. The feedthrough device includes a first end disposed in the hermetically-sealed cavity of the housing and a second end extending from the cavity away from the housing. The feedthrough device provides the at least one integrated mounting surface proximate the first end within the hermetically-sealed cavity. At least a first laser diode driver (LDD) chip mounts to the at least one integrated mounting surface of the feedthrough device. A plurality of laser arrangements are also disposed in the hermetically-sealed cavity proximate the first LDD chip and mount to, for instance, a LD submount supported by a thermoelectric cooler.
    Type: Application
    Filed: March 7, 2019
    Publication date: September 10, 2020
    Inventors: Kai-Sheng LIN, Kevin LIU, Hao-Chiang CHENG