Patents by Inventor Harold G. Craighead

Harold G. Craighead has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8072117
    Abstract: A source signal is converted into a time-variant temperature field with transduction into mechanical motion. In one embodiment, the conversion of a source signal into the time-variant temperature field is provided by utilizing a micro-fabricated fast response, bolometer-type radio frequency power meter. A resonant-type micromechanical thermal actuator may be utilized for temperature read-out and demodulation.
    Type: Grant
    Filed: February 20, 2006
    Date of Patent: December 6, 2011
    Assignees: Cornell Research Foundation, Inc., Naval Research Laboratory
    Inventors: Maxim Zalalutdinov, Robert B. Reichenbach, Keith Aubin, Brian H. Houston, Jeevak M. Parpia, Harold G. Craighead
  • Patent number: 8049580
    Abstract: An array of micromechanical oscillators have different resonant frequencies based on their geometries. In one embodiment, a micromechanical oscillator has a resonant frequency defined by an effective spring constant that is modified by application of heat. In one embodiment, the oscillator is disc of material supported by a pillar of much smaller diameter than the disc. The periphery of the disc is heated to modify the resonant frequency (or equivalently the spring constant or stiffness) of the disc. Continuous control of the output phase and frequency may be achieved when the oscillator becomes synchronized with an imposed sinusoidal force of close frequency. The oscillator frequency can be detuned to produce an easily controlled phase differential between the injected signal and the oscillator feedback. A phased array radar may be produced using independent phase controllable oscillators.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: November 1, 2011
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Robert B. Reichenbach, Keith Aubin, Maxim Zalalutdinov, Jeevak M. Parpia, Harold G. Craighead
  • Publication number: 20110158575
    Abstract: An optical apparatus that provides extraordinary light transmission through a sub-wavelength-sized light transmitting region of the apparatus includes a core region of dielectric material having a complex dielectric constant, ?1, surrounded by a metallic cladding material having a complex dielectric constant, ?2, wherein the core region has a maximum dimension, 2a, further wherein 2a is less than ?, where ? is the free-space wavelength of light incident on an input side of the apparatus, and further wherein |?1| is greater than 0.5|?2|, ?1 has a positive real part, and ?2 has a negative real part, whereby the incident light will be transmitted by and exit the apparatus from an output side with extraordinary transmission.
    Type: Application
    Filed: December 29, 2010
    Publication date: June 30, 2011
    Applicant: CORNELL UNIVERSITY
    Inventors: Harold G. Craighead, Watt W. Webb, Huizhong Xu, Pangshun Zhu
  • Publication number: 20110121937
    Abstract: A method for manufacturing or preparing thin-film stacks that exhibit moderate, finite, stress-dependent resistance and which can be incorporated into a transduction mechanism that enables simple, effective signal to be read out from a micro- or nano-mechanical structure. As the structure is driven, the resistance of the intermediate layers is modulated in tandem with the motion, and with suitable dc-bias, the motion is directly converted into detectable voltage. In general, detecting signal from MEMS or NEMS devices is difficult, especially using a method that is able to be integrated with standard electronics. The thin-film manufacturing or preparation technique described herein is therefore a technical advance in the field of MEMS/NEMS that could enable new applications as well as the ability to easily develop CMOS-MEMS integrated fabrication techniques.
    Type: Application
    Filed: June 26, 2009
    Publication date: May 26, 2011
    Applicant: CORNELL UNIVERSITY
    Inventors: Jeevak M. Parpia, Harold G. Craighead, Joshua D. Cross, Bojan Robert Ilic, Maxim K. Zalalutdinov, Jeffrey W. Baldwin, Brian H. Houston
  • Patent number: 7942568
    Abstract: An active micromixer uses a surface acoustic wave, preferably a Rayleigh wave, propagating on a piezoelectric substrate to induce acoustic streaming in a fluid in a microfluidic channel. The surface acoustic wave can be generated by applying an RF excitation signal to at least one interdigital transducer on the piezoelectric substrate. The active micromixer can rapidly mix quiescent fluids or laminar streams in low Reynolds number flows. The active micromixer has no moving parts (other than the SAW transducer) and is, therefore, more reliable, less damaging to sensitive fluids, and less susceptible to fouling and channel clogging than other types of active and passive micromixers. The active micromixer is adaptable to a wide range of geometries, can be easily fabricated, and can be integrated in a microfluidic system, reducing dead volume. Finally, the active micromixer has on-demand on/off mixing capability and can be operated at low power.
    Type: Grant
    Filed: June 17, 2005
    Date of Patent: May 17, 2011
    Assignee: Sandia Corporation
    Inventors: Darren W. Branch, Grant D. Meyer, Harold G. Craighead
  • Patent number: 7943307
    Abstract: The present invention is directed to a method of sequencing a target nucleic acid. The method provides a complex comprising a polymerase enzyme, a target nucleic acid molecule, and a primer, wherein the complex is immobilized on a support Fluorescent label is attached to a terminal phosphate group of the nucleotide or nucleotide analog. The growing nucleic acid strand is extended by using the polymerase to add a nucleotide analog to the nucleic acid strand. The nucleotide analog added to the oligonucleotide primer as a result of the polymerizing step is identified. The time duration of the signal from labeled nucleotides or nucleotide analogs that become incorporated is distinguished from freely diffusing labels by a longer retention in the observation volume for the nucleotides or nucleotide analogs that become incorporated than for the freely diffusing labels.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: May 17, 2011
    Assignee: Cornell Research Foundation
    Inventors: Jonas Korlach, Watt W. Webb, Michael Levene, Stephen Turner, Harold G. Craighead, Mathieu Foquet
  • Patent number: 7943305
    Abstract: The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid. Each type of labeled nucleotide comprises an acceptor fluorophore attached to a phosphate portion of the nucleotide such that the fluorophore is removed upon incorporation into a growing strand. Fluorescent signal is emitted via fluorescent resonance energy transfer between the donor fluorophore and the acceptor fluorophore as each nucleotide is incorporated into the growing strand. The sequence is deduced by identifying which base is being incorporated into the growing strand.
    Type: Grant
    Filed: April 13, 2006
    Date of Patent: May 17, 2011
    Assignee: Cornell Research Foundation
    Inventors: Jonas Korlach, Watt W. Webb, Michael Levene, Stephen Turner, Harold G. Craighead, Mathieu Foquet
  • Publication number: 20110111401
    Abstract: The present invention is directed to a method of sequencing a target nucleic acid molecule having a plurality of bases. In its principle, the temporal order of base additions during the polymerization reaction is measured on a molecule of nucleic acid, i.e. the activity of a nucleic acid polymerizing enzyme on the template nucleic acid molecule to be sequenced is followed in real time. The sequence is deduced by identifying which base is being incorporated into the growing complementary strand of the target nucleic acid by the catalytic activity of the nucleic acid polymerizing enzyme at each step in the sequence of base additions. A polymerase on the target nucleic acid molecule complex is provided in a position suitable to move along the target nucleic acid molecule and extend the oligonucleotide primer at an active site.
    Type: Application
    Filed: July 22, 2010
    Publication date: May 12, 2011
    Applicant: Cornell University
    Inventors: Jonas KORLACH, Watt W. Webb, Michael Levene, Stephen Turner, Harold G. Craighead, Mathieu Foquet
  • Patent number: 7939273
    Abstract: A system and method for detecting mass based on a frequency differential of a resonating micromachined structure, such as a cantilever beam. A high aspect ratio cantilever beam is coated with an immobilized binding partner that couples to a predetermined cell or molecule. A first resonant frequency is determined for the cantilever having the immobilized binding partner. Upon exposure of the cantilever to a solution that binds with the binding partner, the mass of the cantilever beam increases. A second resonant frequency is determined and the differential resonant frequency provides the basis for detecting the target cell or molecule. The cantilever may be driven externally or by ambient noise. The frequency response of the beam can be determined optically using reflected light and two photodetectors or by interference using a single photodetector.
    Type: Grant
    Filed: March 11, 2010
    Date of Patent: May 10, 2011
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Harold G. Craighead, Bojan (Rob) Ilic, David A. Czaplewski, Robert H. Hall
  • Publication number: 20110101475
    Abstract: The present invention is directed to a CMOS integrated micromechanical device fabricated in accordance with a standard CMOS foundry fabrication process. The standard CMOS foundry fabrication process is characterized by a predetermined layer map and a predetermined set of fabrication rules. The device includes a semiconductor substrate formed or provided in accordance with the predetermined layer map and the predetermined set of fabrication rules. A MEMS resonator device is fabricated in accordance with the predetermined layer map and the predetermined set of fabrication rules. The MEMS resonator device includes a micromechanical resonator structure having a surface area greater than or equal to approximately 20 square microns. At least one CMOS circuit is coupled to the MEMS resonator member. The at least one CMOS circuit is also fabricated in accordance with the predetermined layer map and the predetermined set of fabrication rules.
    Type: Application
    Filed: June 26, 2009
    Publication date: May 5, 2011
    Applicant: CORNELL UNIVERSITY
    Inventors: Jeevak M. Parpia, Harold G. Craighead, Joshua D. Cross, Bojan Robert Ilic, Maxim K. Zalalutdinov, Jeffrey W. Baldwin, Brian H. Houston
  • Patent number: 7918979
    Abstract: Nanofluidic entropic traps, comprising alternating thin and thick regions, sieve small molecules such as DNA or protein polymers and other molecules. The thick region is comparable or substantially larger than the molecule to be separated, while the thin region is substantially smaller than the size of the molecules to be separated. Due to the molecular size dependence of the entropic trapping effect, separation of molecules may be achieved. In addition, entropic traps are used to collect, trap and control many molecules in the nanofluidic channel. A fabrication method is disclosed to provide an efficient way to make nanofluidic constrictions in any fluidic devices.
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: April 5, 2011
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Jongyoon Han, Harold G. Craighead
  • Publication number: 20110043405
    Abstract: An array of micromechanical oscillators have different resonant frequencies based on their geometries. In one embodiment, a micromechanical oscillator has a resonant frequency defined by an effective spring constant that is modified by application of heat. In one embodiment, the oscillator is disc of material supported by a pillar of much smaller diameter than the disc. The periphery of the disc is heated to modify the resonant frequency (or equivalently the spring constant or stiffness) of the disc. Continuous control of the output phase and frequency may be achieved when the oscillator becomes synchronized with an imposed sinusoidal force of close frequency. The oscillator frequency can be detuned to produce an easily controlled phase differential between the injected signal and the oscillator feedback. A phased array radar may be produced using independent phase controllable oscillators.
    Type: Application
    Filed: November 2, 2010
    Publication date: February 24, 2011
    Applicant: Cornell Research Foundation, Inc.
    Inventors: Robert B. Reichenbach, Keith Aubin, Maxim Zalalutdinov, Jeevak M. Parpia, Harold G. Craighead
  • Publication number: 20110020834
    Abstract: A system and method for detecting mass based on a frequency differential of a resonating micromachined structure, such as a cantilever beam. A high aspect ratio cantilever beam is coated with an immobilized binding partner that couples to a predetermined cell or molecule. A first resonant frequency is determined for the cantilever having the immobilized binding partner. Upon exposure of the cantilever to a solution that binds with the binding partner, the mass of the cantilever beam increases. A second resonant frequency is determined and the differential resonant frequency provides the basis for detecting the target cell or molecule. The cantilever may be driven externally or by ambient noise. The frequency response of the beam can be determined optically using reflected light and two photodetectors or by interference using a single photodetector.
    Type: Application
    Filed: March 11, 2010
    Publication date: January 27, 2011
    Applicant: Cornell Research Foundation, Inc.
    Inventors: Harold G. Craighead, Bojan (Rob) Ilic, David Alan Czaplewski, Robert H. Hall
  • Publication number: 20100331196
    Abstract: The present invention relates to compositions, methods, and uses for obtaining sequence information from nucleic acid molecules.
    Type: Application
    Filed: June 21, 2010
    Publication date: December 30, 2010
    Applicant: Cornell University; Cornell Center for Technology Enterprise and Commercialization (CCTEC)
    Inventors: Harold G. Craighead, Leon M. Bellan
  • Patent number: 7843283
    Abstract: An array of micromechanical oscillators have different resonant frequencies based on their geometries. In one embodiment, a micromechanical oscillator has a resonant frequency defined by an effective spring constant that is modified by application of heat. In one embodiment, the oscillator is disc of material supported by a pillar of much smaller diameter than the disc. The periphery of the disc is heated to modify the resonant frequency (or equivalently the spring constant or stiffness) of the disc. Continuous control of the output phase and frequency may be achieved when the oscillator becomes synchronized with an imposed sinusoidal force of close frequency. The oscillator frequency can be detuned to produce an easily controlled phase differential between the injected signal and the oscillator feedback. A phased array radar may be produced using independent phase controllable oscillators.
    Type: Grant
    Filed: November 9, 2006
    Date of Patent: November 30, 2010
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Robert B. Reichenbach, Keith Aubin, Maxim Zalalutdinov, Jeevak M. Parpia, Harold G. Craighead
  • Patent number: 7833398
    Abstract: Separation of long molecules by length is obtained by forcing such molecules to traverse a boundary between a low free-energy region and a high free-energy region. In one embodiment, the high free-energy region is a dense pillar region or other structure formed on a semiconductor substrate. One or more membranes are used in further embodiments. The low free-energy region is a larger chamber formed adjacent the high free-energy region. A recoil phase allows longer molecules not fully driven into the high free-energy region to recoil into the low free-energy region. In a further variation, the high free-energy region is a membrane having nanoscale holes.
    Type: Grant
    Filed: November 9, 2007
    Date of Patent: November 16, 2010
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Harold G. Craighead, Stephen W. Turner
  • Patent number: 7812502
    Abstract: A micromechanical resonator is formed on a substrate. The resonator has a partial spherical shell clamped on an outside portion of the shell to the substrate. In other embodiments, a flat disc or other shape may be used. Movement is induced in a selected portion of the disc, inducing easily detectible out-of-plane motion. A laser is used in one embodiment to heat the selected portion of the disc and induce the motion. The motion may be detected by capacitive or interferometric techniques.
    Type: Grant
    Filed: February 20, 2006
    Date of Patent: October 12, 2010
    Assignees: Cornell Research Foundation, Inc., Navel Research Laboratory
    Inventors: Maxim Zalalutdinov, Robert B. Reichenbach, Keith Aubin, Brian H. Houston, Jeevak M. Parpia, Harold G. Craighead
  • Patent number: 7781378
    Abstract: An array is formed with a protective cover on a substrate. The protective cover is patterned to produce an array of openings to the substrate. Desired material is deposited on the substrate through the openings. The protective cover may then be removed. In one embodiment, the protective cover is a conformal polymer, such as di-para-xylylene. It may be removed by mechanical peeling. The material may be biological material such as DNA. The protective cover may be used to prevent non-specific hybridization in inter-spot regions by performing hybridization with the cover still in place. Hybridization that occurs in such regions between the spots may be removed with removal of the protective cover.
    Type: Grant
    Filed: September 10, 2004
    Date of Patent: August 24, 2010
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Reid N. Orth, David M. Lin, Theodore G. Clark, Yung-Fu Chang, Harold G. Craighead, Jose Manuel Moran-Mirabal
  • Publication number: 20100157294
    Abstract: A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.
    Type: Application
    Filed: March 2, 2010
    Publication date: June 24, 2010
    Applicant: Cornell Research Foundation, Inc.
    Inventors: Samuel M. Stavis, Joshua B. Edel, Kevan T. Samiee, Harold G. Craighead
  • Patent number: 7695988
    Abstract: A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: April 13, 2010
    Assignee: Cornell Research Foundation, Inc.
    Inventors: Samuel M. Stavis, Joshua B. Edel, Kevan T. Samiee, Harold G. Craighead