Patents by Inventor Harry Rowland

Harry Rowland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230380764
    Abstract: A wireless circuit includes a housing having at least one opening, and sensor connected to the housing at the opening. The sensor includes a first layer having a first dimension and a second layer having a second dimension shorter than the first dimension. The second layer may be positioned entirely within the housing and a surface of said first layer may be exposed to an exterior of the housing.
    Type: Application
    Filed: June 5, 2023
    Publication date: November 30, 2023
    Inventors: Harry ROWLAND, Michael NAGY, Balamurugan SUNDARAM, Suresh SUNDARAM
  • Publication number: 20230371842
    Abstract: A wireless circuit includes a housing, such as a hermetic housing, and at least one antenna coil wound about a coil axis within the housing. The coil axis may be substantially parallel to at least one wall of the housing, wherein the wall parallel to the coil axis is substantially thinner than other walls of the housing.
    Type: Application
    Filed: January 9, 2023
    Publication date: November 23, 2023
    Inventors: Harry Rowland, Michael Nagy
  • Publication number: 20230255486
    Abstract: Disclosed is a physiologic monitoring system comprising a central hub in communication with a management portal for communicating physiologic measurements taken from a plurality of peripheral devices on a patient. At least one non-invasive peripheral device may measure physiologic data from a patient and be in communication with said central hub. A system including an invasive peripheral device may be associated with said patient and be in communication with said central hub. The central hub may be scalable to collect and communicate measurements from the non-invasive peripheral device and the invasive peripheral device. The at least one non-invasive peripheral device may include a blood pressure cuff, an oxygen sensor, a weight scale, and an ECG monitor. The invasive peripheral device may include a wireless sensor reader that may be adapted to measure physiologic data from a sensor implant placed within the cardiovascular system of said patient.
    Type: Application
    Filed: April 10, 2023
    Publication date: August 17, 2023
    Inventors: Michael Nagy, Harry Rowland, Ariel Johnson, Brett Quas
  • Patent number: 11707230
    Abstract: A wireless circuit includes a housing having at least one opening, and sensor connected to the housing at the opening. The sensor includes a first layer having a first dimension and a second layer having a second dimension shorter than the first dimension. The second layer may be positioned entirely within the housing and a surface of said first layer may be exposed to an exterior of the housing.
    Type: Grant
    Filed: March 11, 2019
    Date of Patent: July 25, 2023
    Assignee: ENDOTRONIX, INC.
    Inventors: Harry Rowland, Michael Nagy, Balamurugan Sundaram, Suresh Sundaram
  • Patent number: 11622684
    Abstract: Disclosed is a physiologic monitoring system comprising a central hub in communication with a management portal for communicating physiologic measurements taken from a plurality of peripheral devices on a patient. At least one non-invasive peripheral device may measure physiologic data from a patient and be in communication with said central hub. A system including an invasive peripheral device may be associated with said patient and be in communication with said central hub. The central hub may be scalable to collect and communicate measurements from the non-invasive peripheral device and the invasive peripheral device. The at least one non-invasive peripheral device may include a blood pressure cuff, an oxygen sensor, a weight scale, and an ECG monitor. The invasive peripheral device may include a wireless sensor reader that may be adapted to measure physiologic data from a sensor implant placed within the cardiovascular system of said patient.
    Type: Grant
    Filed: July 19, 2018
    Date of Patent: April 11, 2023
    Assignee: ENDOTRONIX, INC.
    Inventors: Michael Nagy, Harry Rowland, Ariel Johnson, Brett Quas
  • Publication number: 20230072070
    Abstract: Disclosed are a reader device, system, and method for communicating with a wireless sensor. The reader device may be configured to analyze the strength of a response signal transmitted from the wireless sensor in response to an excitation pulse generated by the reader device. In one embodiment, the reader device may be configured to engage be placed in a plurality of modes to allow the reader to transmit a signal, such as a short pulse of energy or a short burst of radio frequency energy to cause the wireless sensor to output a resonant signal. The reader device may receive the resonant signal from the wireless sensor and evaluate it against predetermined values. The evaluated signals may be used to assess the strength and the proximity of the reader device relative to the wireless sensor as it is implanted in a patient.
    Type: Application
    Filed: October 3, 2022
    Publication date: March 9, 2023
    Inventors: Balamurugan Sundaram, Michael Nagy, Douglas Nielsen, Suresh Sundaram, Harry Rowland
  • Patent number: 11547320
    Abstract: A wireless circuit includes a housing, such as a hermetic housing, and at least one antenna coil wound about a coil axis within the housing. The coil axis may be substantially parallel to at least one wall of the housing, wherein the wall parallel to the coil axis is substantially thinner than other walls of the housing.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: January 10, 2023
    Assignee: ENDOTRONIX, INC.
    Inventors: Harry Rowland, Michael Nagy
  • Patent number: 11461568
    Abstract: Disclosed are a reader device, system, and method for communicating with a wireless sensor. The reader device may be configured to analyze the strength of a response signal transmitted from the wireless sensor in response to an excitation pulse generated by the reader device. In one embodiment, the reader device may be configured to engage be placed in a plurality of modes to allow the reader to transmit a signal, such as a short pulse of energy or a short burst of radio frequency energy to cause the wireless sensor to output a resonant signal. The reader device may receive the resonant signal from the wireless sensor and evaluate it against predetermined values. The evaluated signals may be used to assess the strength and the proximity of the reader device relative to the wireless sensor as it is implanted in a patient.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: October 4, 2022
    Assignee: ENDOTRONIX, INC.
    Inventors: Balamurugan Sundaram, Michael Nagy, Douglas Nielsen, Suresh Sundaram, Harry Rowland
  • Publication number: 20200260991
    Abstract: Disclosed is an implant and method of making an implant. The implant having a housing that defines a cavity. The housing includes a sensor comprising a base attached to a diaphragm wherein said base may be positioned within said cavity. The sensor may be a capacitive pressure sensor. The diaphragm may be connected to the housing to hermetically seal said housing. The sensor may include electrical contacts positioned on the diaphragm. The base may define a capacitive gap and a vent wherein the electrodes may be positioned within said capacitive gap such that at least a portion of the electrical contacts extend through the vent. The implant may include a coil in electric communication with the sensor, said coil may be positioned within said housing. A printed circuit board having at least one component may be attached to the floating base.
    Type: Application
    Filed: April 17, 2020
    Publication date: August 20, 2020
    Inventors: Harry Rowland, Michael Nagy, Nathan Plag, Tyler Panian, Suresh Sundaram
  • Publication number: 20200146562
    Abstract: Provided are various embodiments of improvements made to methods, systems and assemblies of implant delivery systems and the associated implants. In one embodiment, provided is an implant delivery system comprising an implant, a first sheath and a second sheath each extending from a proximal end of said implant delivery system, the first sheath is translatable relative to said second sheath wherein said implant is connected to an exterior surface of said first sheath, and wherein said first sheath and said second sheath are movable with respect to one another to deploy said implant to a target site in an anatomy. Said delivery system may be configured to be partially inserted into a blood vessel of a human body such that said proximal end remains external to said body and said distal end is internal to said body.
    Type: Application
    Filed: December 26, 2019
    Publication date: May 14, 2020
    Inventors: Nicholas Chronos, Michael Nagy, Harry Rowland, Tyler Panian, Thomas Wilschke, Trace Royer, James Coyle, David Mahr, Omid Forouzan, Brad Poff DVM
  • Patent number: 10638955
    Abstract: Disclosed is an implant and method of making an implant. The implant having a housing that defines a cavity. The housing includes a sensor comprising a base attached to a diaphragm wherein said base may be positioned within said cavity. The sensor may be a capacitive pressure sensor. The diaphragm may be connected to the housing to hermetically seal said housing. The sensor may include electrical contacts positioned on the diaphragm. The base may define a capacitive gap and a vent wherein the electrodes may be positioned within said capacitive gap such that at least a portion of the electrical contacts extend through the vent. The implant may include a coil in electric communication with the sensor, said coil may be positioned within said housing. A printed circuit board having at least one component may be attached to the floating base.
    Type: Grant
    Filed: July 19, 2016
    Date of Patent: May 5, 2020
    Assignee: ENDOTRONIX, INC.
    Inventors: Harry Rowland, Michael Nagy, Nathan Plag, Tyler Panian, Suresh Sundaram
  • Publication number: 20200029857
    Abstract: A wireless circuit includes a housing, such as a hermetic housing, and at least one antenna coil wound about a coil axis within the housing. The coil axis may be substantially parallel to at least one wall of the housing, wherein the wall parallel to the coil axis is substantially thinner than other walls of the housing.
    Type: Application
    Filed: October 7, 2019
    Publication date: January 30, 2020
    Inventors: Harry Rowland, Michael Nagy
  • Publication number: 20200026892
    Abstract: Disclosed are a reader device, system, and method for communicating with a wireless sensor. The reader device may be configured to analyze the strength of a response signal transmitted from the wireless sensor in response to an excitation pulse generated by the reader device. In one embodiment, the reader device may be configured to engage be placed in a plurality of modes to allow the reader to transmit a signal, such as a short pulse of energy or a short burst of radio frequency energy to cause the wireless sensor to output a resonant signal. The reader device may receive the resonant signal from the wireless sensor and evaluate it against predetermined values. The evaluated signals may be used to assess the strength and the proximity of the reader device relative to the wireless sensor as it is implanted in a patient.
    Type: Application
    Filed: September 30, 2019
    Publication date: January 23, 2020
    Inventors: Balamurugan Sundaram, Michael Nagy, Douglas Nielsen, Suresh Sundaram, Harry Rowland
  • Patent number: 10433764
    Abstract: A wireless circuit includes a housing, such as a hermetic housing, and at least one antenna coil wound about a coil axis within the housing. The coil axis may be substantially parallel to at least one wall of the housing, wherein the wall parallel to the coil axis is substantially thinner than other walls of the housing.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: October 8, 2019
    Assignee: ENDOTRONIX, INC.
    Inventors: Harry Rowland, Michael Nagy
  • Patent number: 10430624
    Abstract: Disclosed are a reader device, system, and method for communicating with a wireless sensor. The reader device may be configured to analyze the strength of a response signal transmitted from the wireless sensor in response to an excitation pulse generated by the reader device. In one embodiment, the reader device may be configured to engage be placed in a plurality of modes to allow the reader to transmit a signal, such as a short pulse of energy or a short burst of radio frequency energy to cause the wireless sensor to output a resonant signal. The reader device may receive the resonant signal from the wireless sensor and evaluate it against predetermined values. The evaluated signals may be used to assess the strength and the proximity of the reader device relative to the wireless sensor as it is implanted in a patient.
    Type: Grant
    Filed: February 23, 2018
    Date of Patent: October 1, 2019
    Assignee: ENDOTRONIX, INC.
    Inventors: Balamurugan Sundaram, Michael Nagy, Douglas Nielsen, Suresh Sundaram, Harry Rowland
  • Publication number: 20190200928
    Abstract: A wireless circuit includes a housing having at least one opening, and sensor connected to the housing at the opening. The sensor includes a first layer having a first dimension and a second layer having a second dimension shorter than the first dimension. The second layer may be positioned entirely within the housing and a surface of said first layer may be exposed to an exterior of the housing.
    Type: Application
    Filed: March 11, 2019
    Publication date: July 4, 2019
    Inventors: Harry ROWLAND, Michael NAGY, Balamurugan SUNDARAM, Suresh SUNDARAM
  • Patent number: 10226218
    Abstract: A wireless circuit includes a housing having at least one opening, and sensor connected to the housing at the opening. The sensor includes a first layer having a first dimension and a second layer having a second dimension shorter than the first dimension. The second layer may be positioned entirely within the housing and a surface of said first layer may be exposed to an exterior of the housing.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: March 12, 2019
    Assignee: ENDOTRONIX, INC.
    Inventors: Harry Rowland, Michael Nagy, Balamurugan Sundaram, Suresh Sundaram
  • Patent number: 10206592
    Abstract: An implant delivery system includes an implant, such as a wireless sensor, a first sheath, and a second sheath. The sheaths extend from a proximal end of the implant delivery system, and at least said first sheath extends to a distal end of said implant delivery system. The first sheath is positioned at least partially within said second sheath. The implant is connected to an exterior surface of the first sheath and positioned near an end of the second sheath. The first sheath and said second sheath are movable with respect to one another to deploy said implant to a desired location.
    Type: Grant
    Filed: September 13, 2013
    Date of Patent: February 19, 2019
    Assignee: ENDOTRONIX, INC.
    Inventors: Harry Rowland, Mike Nagy, Kevin MacDonald, Alyssa Kurt, Andy Black, Andy Leopold
  • Publication number: 20190021597
    Abstract: Disclosed is a physiologic monitoring system comprising a central hub in communication with a management portal for communicating physiologic measurements taken from a plurality of peripheral devices on a patient. At least one non-invasive peripheral device may measure physiologic data from a patient and be in communication with said central hub. A system including an invasive peripheral device may be associated with said patient and be in communication with said central hub. The central hub may be scalable to collect and communicate measurements from the non-invasive peripheral device and the invasive peripheral device. The at least one non-invasive peripheral device may include a blood pressure cuff, an oxygen sensor, a weight scale, and an ECG monitor. The invasive peripheral device may include a wireless sensor reader that may be adapted to measure physiologic data from a sensor implant placed within the cardiovascular system of said patient.
    Type: Application
    Filed: July 19, 2018
    Publication date: January 24, 2019
    Inventors: Michael Nagy, Harry Rowland, Ariel Johnson, Brett Quas
  • Publication number: 20180247095
    Abstract: Disclosed are a reader device, system, and method for communicating with a wireless sensor. The reader device may be configured to analyze the strength of a response signal transmitted from the wireless sensor in response to an excitation pulse generated by the reader device. In one embodiment, the reader device may be configured to engage be placed in a plurality of modes to allow the reader to transmit a signal, such as a short pulse of energy or a short burst of radio frequency energy to cause the wireless sensor to output a resonant signal. The reader device may receive the resonant signal from the wireless sensor and evaluate it against predetermined values. The evaluated signals may be used to assess the strength and the proximity of the reader device relative to the wireless sensor as it is implanted in a patient.
    Type: Application
    Filed: February 23, 2018
    Publication date: August 30, 2018
    Inventors: Balamurugan Sundaram, Michael Nagy, Douglas Nielsen, Suresh Sundaram, Harry Rowland