Patents by Inventor Harry W. Deckman

Harry W. Deckman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9186626
    Abstract: Methods are provided for removing CO2 and/or H2S from a gas phase stream, such as a refinery flue gas stream, a coal-fired or petroleum-burning power plant, or a natural gas stream. A gas phase stream containing CO2 and/or H2S can be contacted under effective conditions with an aqueous slurry of supported amine particles. The CO2 and/or H2S can react with the supported amines to form bicarbonates, carbonates, carbamates, sulfide salts, or other species. Because the amine is part of, bonded to, or otherwise supported on a particulate substrate, the reaction product from the amine reaction can also remain bound to the particle. After reacting supported amines with CO2 and/or H2S captured from a gas stream, the supported amines particles can be separated from the aqueous slurry environment for regeneration of the supported amine and release of the CO2 and/or H2S.
    Type: Grant
    Filed: November 13, 2013
    Date of Patent: November 17, 2015
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Daniel P. Leta, Jack W. Johnson, Ni Zheng, Harry W. Deckman
  • Patent number: 9168485
    Abstract: A swing adsorption process for removing contaminants from a gaseous feed stream through a combination of a selective adsorbent material containing an effective amount of a non-adsorbent filler, adsorbent contactor design, and adsorption cycle design.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: October 27, 2015
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Harry W. Deckman, Robert A. Johnson, Robert F. Tammera, Thomas N. Anderson
  • Patent number: 9168483
    Abstract: Methods are provided for forming zeolite crystals suitable for gas phase separations with transport characteristics that are stable over time. The zeolitic materials and/or corresponding methods of synthesis or treatment described herein provide for improved stability in the early stages of process operation for some types of gas phase separations. The methods allow for synthesis of DDR type zeolites that have reduced contents of alkali metal impurities. The synthetic methods for reducing the non-framework alkali metal atom or cation impurity content appear to have little or no impact on the DDR crystal structure and morphology.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: October 27, 2015
    Assignee: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Peter I. Ravikovitch, Barbara Carstensen, Charanjit S. Paur, Ivy D. Johnson, Harry W. Deckman
  • Patent number: 9126138
    Abstract: The present application is directed to a method and system for preparing gaseous utility streams from gaseous process streams, particularly, removing oil contamination from such streams prior to use in a dry gas seal. The methods and systems may include at least one kinetic swing adsorption process including pressure swing adsorption, temperature swing adsorption, calcination, and inert purge processes to treat gaseous streams for use in dry gas seals of rotating equipment such as compressors, turbines and pumps and other utilities. The adsorbent materials used include a high surface area solid structured microporous and mesoporous materials.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: September 8, 2015
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Harry W. Deckman, Preeti Kamakoti, Peter I. Ravikovitch, Bruce T. Kelley, Paul Scott Northrop, Peter C. Rasmussen, Paul Lawrence Tanaka, Martin N. Webster, Wieslaw Jerzy Roth, Edward W. Corcoran
  • Patent number: 9095809
    Abstract: Systems and methods are provided for improving separation of gas phase streams using an adsorbent, such as 8-member ring zeolite adsorbents or DDR type zeolite adsorbents. Suitable gas phase streams can include at least one hydrocarbon, such as methane or a hydrocarbon containing at least one saturated carbon-carbon bond, and at least one additional component, such as CO2 or N2. The selectivity of the adsorbent is improved by selectivating the adsorbent with one or more barrier compounds. The presence of the barrier compounds is believed to alter the relative ability of potential adsorbates to enter into and/or move within the pores of the adsorbent.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: August 4, 2015
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Harry W. Deckman, Peter I. Ravikovitch, Preeti Kamakoti, Chris Yoon
  • Publication number: 20150182947
    Abstract: Methods are provided for synthesizing ZSM-58 crystals with an improved morphology and/or an improved size distribution. By controlling the conditions during synthesis of the ZSM-58 crystals, crystals of a useful size with a narrow size distribution can be generated. Additionally, by controlling the ratio of water content to silica content in the synthesis mixture, it has unexpectedly been found that ZSM-58 crystals can be formed with an improved morphology. The improved morphology can result in ZSM-58 crystals with a more uniform size across the various dimensions of the crystal, which allows for more uniform diffusion within the crystal. This is in contrast to conventionally synthesized crystals, where the size of the crystal can vary along different axes of the crystals.
    Type: Application
    Filed: December 17, 2014
    Publication date: July 2, 2015
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Ivy D. Johnson, Tilman W. Beutel, Peter I. Ravikovitch, Harry W. Deckman, Jack W. Johnson, Jean W. Beeckman, Natalie A. Fassbender, Nadya A. Hrycenko, Randy J. Smiley
  • Publication number: 20150159947
    Abstract: The present disclosure provides a method for separating a feed stream in a distillation tower which includes separating a feed stream in a stripper section into an enriched contaminant bottom liquid stream and a freezing zone vapor stream; contacting the freezing zone vapor stream in the controlled freeze zone section with a freezing zone liquid stream at a temperature and pressure at which a solid and a hydrocarbon-enriched vapor stream form; directly applying heat to a controlled freeze zone wall of the controlled freeze zone section with a heating mechanism coupled to at least one of a controlled freeze zone internal surface of the controlled freeze zone wall and a controlled freeze zone external surface of the controlled freeze zone wall; and at least one of destabilizing and preventing adhesion of the solid to the controlled freeze zone wall with the heating mechanism.
    Type: Application
    Filed: October 17, 2014
    Publication date: June 11, 2015
    Inventors: Jaime A. Valencia, Harry W. Deckman, Charles J. Mart, James T. Wilkins, Paul Scott Northrop
  • Patent number: 9034079
    Abstract: A pressure swing adsorption process for removal of CO2 from natural gas streams through a combination of a selective adsorbent material containing an effective amount of a non-adsorbent filler, adsorbent contactor design, and adsorption cycle design. The removal of contaminants from gas streams, preferably natural gas streams, using rapid-cycle swing adsorption processes, such as rapid-cycle pressure swing adsorption (RC-PSA). Separations at high pressure with high product recovery and/or high product purity are provided through a combination of judicious choices of adsorbent material, gas-solid contactor, system configuration, and cycle designs. For example, cycle designs that include steps of purge and staged blow-down as well as the inclusion of a mesopore filler in the adsorbent material significantly improves product (e.g., methane) recovery. An RC-PSA product with less than 10 ppm H2S can be produced from a natural gas feed stream that contains less than 1 mole percent H2S.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: May 19, 2015
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Harry W. Deckman, Robert A. Johnson, Bruce T. Kelley, Peter I. Ravikovitch, Thomas N. Anderson
  • Patent number: 8906138
    Abstract: The present application is directed to a method and system for preparing gaseous utility streams from gaseous process streams, nitrogen process streams, and other types of streams. The methods and systems may include at least one swing adsorption process including pressure swing adsorption, temperature swing adsorption, and rapid-cycle adsorption processes to treat gaseous streams for use in dry gas seals of rotating equipment such as compressors, turbines and pumps and for other utilities. The systems and processes of the present disclosure are further applicable to high pressure gaseous streams, for example, up to about 600 bar.
    Type: Grant
    Filed: October 14, 2008
    Date of Patent: December 9, 2014
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Peter C. Rasmussen, Paul L. Tanaka, Bruce T. Kelley, Stanley O. Uptigrove, Harry W. Deckman
  • Patent number: 8865100
    Abstract: The present application is directed to a method and system for monetizing energy. More specifically, the invention is directed to the economically efficient utilization of remote or stranded natural gas resources. The invention includes importing a high energy density material into an energy market and distributing the high energy density material (HEDM) therein. The HEDM is produced from reduction of a material oxide such as boria into the HEDM, which may be boron. The reduction utilizes remote hydrocarbon resources such as stranded natural gas resources.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: October 21, 2014
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Bruce T. Kelley, Harry W. Deckman, Stephen Mark Davis, Frank Hershkowitz
  • Patent number: 8858683
    Abstract: A process for reducing the loss of valuable products by improving the overall recovery of a contaminant gas component in swing adsorption processes. The present invention utilizes at least two adsorption beds, in series, with separately controlled cycles to control the adsorption front and optionally to maximize the overall capacity of a swing adsorption process and to improve overall recovery a contaminant gas component from a feed gas mixture.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: October 14, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventor: Harry W. Deckman
  • Patent number: 8852322
    Abstract: A gas separation process uses a structured particulate bed of adsorbent coated shapes/particles laid down in the bed in an ordered manner to simulate a monolith by providing longitudinally extensive gas passages by which the gas mixture to be separated can access the adsorbent material along the length of the particles. The particles can be laid down either directly in the bed or in locally structured packages/bundles which themselves are similarly oriented such that the bed particles behave similarly to a monolith but without at least some disadvantages. The adsorbent particles can be formed with a solid, non-porous core with the adsorbent formed as a thin, adherent coating on the exposed exterior surface. Particles may be formed as cylinders/hollow shapes to provide ready access to the adsorbent. The separation may be operated as a kinetic or equilibrium controlled process.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: October 7, 2014
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Ramesh Gupta, Harry W. Deckman, Daniel P. Leta
  • Patent number: 8846558
    Abstract: The present invention relates to the modification of the internal surfaces of zeolite crystals via treatment with alcohols containing at least four carbon atoms. The modified zeolites possess high thermal stability and the properties of the modified zeolites can be tailored to provide improved performance for use in separations processes.
    Type: Grant
    Filed: July 14, 2009
    Date of Patent: September 30, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Chil-Hung Cheng, Christopher Jones, Sankar Nair, Ronald R. Chance, Benjamin A. McCool, Harry W. Deckman
  • Publication number: 20140208797
    Abstract: A gas processing facility for the liquefaction of a natural gas feed stream is provided. The facility comprises a gas separation unit having at least one fractionation vessel. The gas separation unit employs adsorbent beds for adsorptive kinetic separation. The adsorbent beds release a methane-rich gas feed stream. The facility also includes a high-pressure expander cycle refrigeration system. The refrigeration system compresses the methane-rich gas feed stream to a pressure greater than about 1,000 psia. The refrigeration system also chills the methane-rich gas feed stream in one or more coolers, and then expands the chilled gas feed stream to form a liquefied product stream. Processes for liquefying a natural gas feed stream using AKS and a high-pressure expander cycle refrigeration system are also provided herein. Such processes allow for the formation of LNG using a facility having less weight than conventional facilities.
    Type: Application
    Filed: June 29, 2012
    Publication date: July 31, 2014
    Inventors: Bruce T. Kelley, Harry W. Deckman, Moses K. Minta
  • Patent number: 8784534
    Abstract: A pressure-temperature swing adsorption process for the removal of a target species, such as an acid gas, from a gas mixture, such as a natural gas stream. Herein, a novel multi-step temperature swing/pressure swing adsorption is utilized to operate while maintaining very high purity levels of contaminant removal from a product stream. The present process is particularly effective and beneficial in removing contaminants such as CO2 and/or H2S from a natural gas at high adsorption pressures (e.g., at least 500 psig) to create product streams of very high purity (i.e., very low contaminant levels).
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: July 22, 2014
    Assignee: Exxonmobil Research and Engineering Company
    Inventors: Preeti Kamakoti, Daniel P. Leta, Harry W. Deckman, Peter I. Ravikovitch, Thomas N. Anderson
  • Patent number: 8784533
    Abstract: A temperature swing adsorption process for the removal of a target species, such as an acid gas, from a gas mixture, such as a natural gas stream. Herein, a novel multi-step temperature swing/pressure swing adsorption is utilized to operate while maintaining very high purity levels of contaminant removal from a product stream. The present process is particularly effective and beneficial in removing contaminants such as CO2 and/or H2S from a natural gas at relatively high adsorption pressures (e.g., at least 500 psig) to create product streams of very high purity (i.e., very low contaminant levels).
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: July 22, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Daniel P. Leta, Preeti Kamakoti, Harry W. Deckman, Peter I. Ravikovitch, Thomas N. Anderson
  • Patent number: 8784535
    Abstract: The present invention relates to a pressure-temperature swing adsorption process wherein gaseous components that have been adsorbed can be recovered from the adsorbent bed at elevated pressures. In particular, the present invention relates to a pressure-temperature swing adsorption process for the separation of C2+ hydrocarbons (hydrocarbons with at least 2 carbon atoms) from natural gas streams to obtain a high purity methane product stream. In more preferred embodiments of the present processes, the processes may be used to obtain multiple, high purity hydrocarbon product streams from natural gas stream feeds resulting in a chromatographic-like fractionation with recovery of high purity individual gaseous component streams.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: July 22, 2014
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Peter I. Ravikovitch, Robert A. Johnson, Harry W. Deckman, Thomas N. Anderson
  • Publication number: 20140178278
    Abstract: Systems and methods are provided for performing CO2 sorption and regeneration processes that can take advantage of phase changes between solutions of amine-CO2 reaction products and precipitate slurries, where the slurry particles can include solid precipitates formed based on the amine-CO2 reaction products. An amine solution can be used to capture CO2 from a gas phase stream. During this initial capture process, the amine-CO2 reaction product can remain in solution. The solution containing the amine-CO2 reaction product can then be exposed to a set of conditions which result in precipitation of a portion of the amine-CO2 reaction product to form a slurry. The precipitate slurry can be passed into one or more release stages where the conditions for the slurry are altered to allow for release of the CO2.
    Type: Application
    Filed: November 22, 2013
    Publication date: June 26, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Michael Siskin, Patrick L. Hanks, Pavel Kortunov, Robert B. Fedich, Patrick P. McCall, Hans Thomann, Daniel Leta, Lisa S. Baugh, David C. Calabro, Harry W. Deckman
  • Publication number: 20140161697
    Abstract: Methods are provided for removing CO2 and/or H2S from a gas phase stream, such as a refinery flue gas stream, a coal-fired or petroleum-burning power plant, or a natural gas stream. A gas phase stream containing CO2 and/or H2S can be contacted under effective conditions with an aqueous slurry of supported amine particles. The CO2 and/or H2S can react with the supported amines to form bicarbonates, carbonates, carbamates, sulfide salts, or other species. Because the amine is part of, bonded to, or otherwise supported on a particulate substrate, the reaction product from the amine reaction can also remain bound to the particle. After reacting supported amines with CO2 and/or H2S captured from a gas stream, the supported amines particles can be separated from the aqueous slurry environment for regeneration of the supported amine and release of the CO2 and/or H2S.
    Type: Application
    Filed: November 13, 2013
    Publication date: June 12, 2014
    Applicant: EXXONMOBIL RESEARCH AND ENGINEERING COMPANY
    Inventors: Daniel P. Leta, Jack W. Johnson, Ni Zheng, Harry W. Deckman
  • Publication number: 20140157986
    Abstract: Methods are provided for forming zeolite crystals suitable for gas phase separations with transport characteristics that are stable over time. The zeolitic materials and/or corresponding methods of synthesis or treatment described herein provide for improved stability in the early stages of process operation for some types of gas phase separations. The methods allow for synthesis of DDR type zeolites that have reduced contents of alkali metal impurities. The synthetic methods for reducing the non-framework alkali metal atom or cation impurity content appear to have little or no impact on the DDR crystal structure and morphology.
    Type: Application
    Filed: November 8, 2013
    Publication date: June 12, 2014
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Peter I. Ravikovitch, Barbara Carstensen, Charanjit S. Paur, Ivy D. Johnson, Harry W. Deckman