Patents by Inventor Haruki Fukai

Haruki Fukai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10170891
    Abstract: An aluminium gallium indium phosphide (AlGaInP)-based semiconductor laser device is provided. On a main surface of a semiconductor substrate formed of n-type GaAs (gallium arsenide), from the bottom layer, an n-type buffer layer, an n-type cladding layer formed of an AlGaInP-based semiconductor containing silicon (Si) as a dopant, an active layer, a p-type cladding layer formed of an AlGaInP-based semiconductor containing magnesium (Mg) or zinc (Zn) as a dopant, an etching stopper layer, and a p-type contact layer are formed. Here, when an Al composition ratio x of the AlGaInP-based semiconductor is taken as a composition ratio of Al and Ga defined as (AlxGa1-x)0.5In0.5P, a composition of the n-type cladding layer is expressed as (AlxnGa1-xn)0.5In0.5P (0.9<xn<1) and a composition of the p-type cladding layer is expressed as (AlxpGa1-xp)0.5In0.5P (0.9<xp?1), and xn and xp satisfy a relationship of xn<xp.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: January 1, 2019
    Assignee: USHIO OPTO SEMICONDUCTORS, INC.
    Inventors: Masato Hagimoto, Haruki Fukai, Tsutomu Kiyosumi, Shinji Sasaki, Satoshi Kawanaka
  • Publication number: 20170012410
    Abstract: An aluminium gallium indium phosphide (AlGaInP)-based semiconductor laser device is provided. On a main surface of a semiconductor substrate formed of n-type GaAs (gallium arsenide), from the bottom layer, an n-type buffer layer, an n-type cladding layer formed of an AlGaInP-based semiconductor containing silicon (Si) as a dopant, an active layer, a p-type cladding layer formed of an AlGaInP-based semiconductor containing magnesium (Mg) or zinc (Zn) as a dopant, an etching stopper layer, and a p-type contact layer are formed. Here, when an Al composition ratio x of the AlGaInP-based semiconductor is taken as a composition ratio of Al and Ga defined as (AlxGa1-x)0.5In0.5P, a composition of the n-type cladding layer is expressed as (AlxnGa1-xn)0.5In0.5P (0.9<xn<1) and a composition of the p-type cladding layer is expressed as (AlxpGa1-xp)0.5In0.5P (0.9<xp?1), and xn and xp satisfy a relationship of xn<xp.
    Type: Application
    Filed: July 15, 2016
    Publication date: January 12, 2017
    Inventors: Masato HAGIMOTO, Haruki FUKAI, Tsutomu KIYOSUMI, Shinji SASAKI, Satoshi KAWANAKA
  • Patent number: 9425583
    Abstract: An aluminium gallium indium phosphide (AlGaInP)-based semiconductor laser device is provided. On a main surface of a semiconductor substrate formed of n-type GaAs (gallium arsenide), from the bottom layer, an n-type buffer layer, an n-type cladding layer formed of an AlGaInP-based semiconductor containing silicon (Si) as a dopant, an active layer, a p-type cladding layer formed of an AlGaInP-based semiconductor containing magnesium (Mg) or zinc (Zn) as a dopant, an etching stopper layer, and a p-type contact layer are formed. Here, when an Al composition ratio x of the AlGaInP-based semiconductor is taken as a composition ratio of Al and Ga defined as (AlxGa1?x)0.5In0.5P, a composition of the n-type cladding layer is expressed as (AlxnGa1?xn)0.5In0.5P (0.9<xn<1) and a composition of the p-type cladding layer is expressed as (AlxpGa1?xp)0.5In0.5P (0.9<xp?1), and xn and xp satisfy a relationship of xn<xp.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: August 23, 2016
    Assignee: USHIO OPTO SEMICONDUCTORS, INC.
    Inventors: Masato Hagimoto, Haruki Fukai, Tsutomu Kiyosumi, Shinji Sasaki, Satoshi Kawanaka
  • Publication number: 20150003483
    Abstract: An aluminium gallium indium phosphide (AlGaInP)-based semiconductor laser device is provided. On a main surface of a semiconductor substrate formed of n-type GaAs (gallium arsenide), from the bottom layer, an n-type buffer layer, an n-type cladding layer formed of an AlGaInP-based semiconductor containing silicon (Si) as a dopant, an active layer, a p-type cladding layer formed of an AlGaInP-based semiconductor containing magnesium (Mg) or zinc (Zn) as a dopant, an etching stopper layer, and a p-type contact layer are formed. Here, when an Al composition ratio x of the AlGaInP-based semiconductor is taken as a composition ratio of Al and Ga defined as (AlxGa1-x)0.5In0.5P, a composition of the n-type cladding layer is expressed as (AlxGa1-x)0.5In0.5P (0.9<xn<1) and a composition of the p-type cladding layer is expressed as (AlxpGa1-xp)0.5In0.5P (0.9<xp?1), and xn and xp satisfy a relationship of xn<xp.
    Type: Application
    Filed: September 18, 2014
    Publication date: January 1, 2015
    Inventors: Masato HAGIMOTO, Haruki FUKAI, Tsutomu KIYOSUMI, Shinji SASAKI, Satoshi KAWANAKA
  • Patent number: 7309879
    Abstract: A semiconductor laser element capable of reducing the contact resistance and the thermal resistance and realizing a high reliability is provided. The semiconductor laser element includes: a semiconductor substrate, an active layer formed on the semiconductor substrate, a ridge having a clad layer formed on the active layer and a contact layer formed on the clad layer, an insulation film covering the side surfaces of the clad layer, and an electrode connected to the contact layer, wherein the insulation layer has an end portion in the ridge thickness direction located between the upper surface and the lower surface of the contact layer.
    Type: Grant
    Filed: February 9, 2006
    Date of Patent: December 18, 2007
    Assignee: Opnext Japan, Inc.
    Inventors: Haruki Fukai, Hidetaka Karita, Atsushi Nakamura, Shigeo Yamashita
  • Publication number: 20060131593
    Abstract: A semiconductor laser element capable of reducing the contact resistance and the thermal resistance and realizing a high reliability is provided. The semiconductor laser element includes: a semiconductor substrate, an active layer formed on the semiconductor substrate, a ridge having a clad layer formed on the active layer and a contact layer formed on the clad layer, an insulation film covering the side surfaces of the clad layer, and an electrode connected to the contact layer, wherein the insulation layer has an end portion in the ridge thickness direction located between the upper surface and the lower surface of the contact layer.
    Type: Application
    Filed: February 9, 2006
    Publication date: June 22, 2006
    Inventors: Haruki Fukai, Hidetaka Karita, Atsushi Nakamura, Shigeo Yamashita
  • Patent number: 7029936
    Abstract: A semiconductor laser element capable of reducing the contact resistance and the thermal resistance and realizing a high reliability is provided. The semiconductor laser element includes: a semiconductor substrate, an active layer formed on the semiconductor substrate, a ridge having a clad layer formed on the active layer and a contact layer formed on the clad layer, an insulation film covering the side surfaces of the clad layer, and an electrode connected to the contact layer, wherein the insulation layer has an end portion in the ridge thickness direction located between the upper surface and the lower surface of the contact layer.
    Type: Grant
    Filed: July 11, 2003
    Date of Patent: April 18, 2006
    Assignees: Hitachi, Ltd., Renesas Eastern Japan Semiconductor, Inc.
    Inventors: Haruki Fukai, Hidetaka Karita, Atsushi Nakamura, Shigeo Yamashita
  • Publication number: 20040240503
    Abstract: A semiconductor laser element capable of reducing the contact resistance and the thermal resistance and realizing a high reliability is provided. The semiconductor laser element includes: a semiconductor substrate, an active layer formed on the semiconductor substrate, a ridge having a clad layer formed on the active layer and a contact layer formed on the clad layer, an insulation film covering the side surfaces of the clad layer, and an electrode connected to the contact layer, wherein the insulation layer has an end portion in the ridge thickness direction located between the upper surface and the lower surface of the contact layer.
    Type: Application
    Filed: July 11, 2003
    Publication date: December 2, 2004
    Applicants: Hitachi, Ltd., Renesas Eastern Japan Semiconductor, Inc.
    Inventors: Haruki Fukai, Hidetaka Karita, Atsushi Nakamura, Shigeo Yamashita