Patents by Inventor Haruki Kaneda

Haruki Kaneda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11967713
    Abstract: The present invention relates to a positive electrode active material for non-aqueous electrolyte secondary battery, including lithium-nickel composite oxide particles having a layer structure of hexagonal system; and a lithium tungstate coating film disposed on a surface of secondary particles of the lithium-nickel composite oxide particles, wherein the positive electrode active material for non-aqueous electrolyte secondary battery includes, as metallic elements, lithium (Li), nickel (Ni), cobalt (Co), element M (M) which is at least one element selected from Mn, V, Mg, Mo, Nb, Ti, Ca, Cr, Zr, Ta, and Al, and tungsten (W), wherein a ratio of amount of substance in the metallic elements contained is Li:Ni:Co:M:W=a:1-x-y:x:y:z, wherein 0.97?a?1.25, 0?x?0.35, 0?y?0.35, and 0.005?z?0.030.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: April 23, 2024
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Yuki Koshika, Haruki Kaneda, Jun Yokoyama
  • Patent number: 11894555
    Abstract: A positive electrode active material for a lithium ion secondary battery containing lithium nickel manganese complex oxide particles, wherein the lithium nickel manganese complex oxide particles are composed of secondary particles in which primary particles of a lithium nickel manganese complex oxide represented by a general formula LidNi1?a?b?cMnaMbZrcO2+? (where M is at least one element selected from Co, W, Mo, Mg, Ca, Al, Ti, Cr, and Ta, and is 0.05?a<0.60, 0?b<0.60, 0.00003?c?0.03, 0.05?a+b+c?0.60, 0.95?d?1.20, and ?0.2???0.2), wherein at least a portion of zirconium is dispersed in the primary particle, and wherein an amount of a positive active material for a lithium ion secondary battery in which an amount of excessive lithium determined by a neutralization titration method is 0.02 mass % or more and 0.09 mass % or less.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: February 6, 2024
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Takuma Nakamura, Haruki Kaneda, Yuki Koshika
  • Publication number: 20240021808
    Abstract: A positive electrode active material that can achieve high thermal stability at low cost is provided. Provided is, for example, a positive electrode active material for a lithium ion secondary battery, the positive electrode active material containing a lithium-nickel composite oxide having a hexagonal layered structure and configured by secondary particles with a plurality of aggregated primary particles, in which the lithium-nickel composite oxide contains lithium (Li), nickel (Ni), manganese (Mn), titanium (Ti), niobium (Nb), and optionally an element M1, an amount of substance ratio of the respective elements is represented as Li:Ni:Mn:M:Ti:Nb=a:(1?x1?y1?b?c):x1:y1:b:c (provided that, 0.97?a?1.25, (1?x1?y1?b?c)<0.80, 0.03?x1?0.35, 0?y1?0.35, 0.005?b?0.05, and 0.001<c?0.03), in the amount of substance ratio, (b+c)?0.06 and b>c are satisfied.
    Type: Application
    Filed: June 30, 2020
    Publication date: January 18, 2024
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Yuki Koshika, Haruki Kaneda
  • Patent number: 11870071
    Abstract: A positive electrode active material for non-aqueous electrolyte secondary battery containing a lithium-nickel-manganese composite oxide formed of secondary particles with a plurality of aggregated primary particles, in which the positive electrode active material is represented by a general formula (1): LidNi1?a?b?cMnaMbNbcO2+?, at least a part of niobium is solid-dissolved inside the primary particles, and an amount of lithium to be eluted into water when the positive electrode active material is immersed in water is 0.02% by mass or more and 0.10% by mass or less with respect to the entire positive electrode active material as determined by a neutralization titration method.
    Type: Grant
    Filed: January 25, 2019
    Date of Patent: January 9, 2024
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Takuma Nakamura, Haruki Kaneda, Yuki Koshika
  • Publication number: 20230378455
    Abstract: A positive electrode active material for a lithium ion secondary battery, in which the lithium-nickel-manganese composite oxide has a hexagonal layered structure, a mole number ratio of elements is represented as Li:Ni:Mn:M:Ti=a:(1-x-y-z):x:y:z, provided that 0.97?a?1.25, 0.035?x?0.15, 0?y?0.15, and 0.01?z?0.05, a ratio of a total amount of peak intensities of most intense peaks of a titanium compound to a (003) diffraction peak intensity that is the most intense peak of the hexagonal layered structure is 0.2 or less, a crystallite diameter at (003) plane is 80 nm or more and less than 160 nm, and a specific surface area is 0.7 m2/g or more and 4.0 m2/g or less.
    Type: Application
    Filed: September 24, 2021
    Publication date: November 23, 2023
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Yuki Koshika, Haruki Kaneda
  • Patent number: 11742483
    Abstract: Provided are a nickel-manganese composite hydroxide capable of producing a secondary battery having a high particle fillability and excellent battery characteristics when used as a precursor of a positive electrode active material and a method for producing the same. A nickel-manganese composite hydroxide is represented by General Formula: NixMnyMz(OH)2+? and contains a secondary particle formed of a plurality of flocculated primary particles. The primary particles have an aspect ratio of at least 3, and at least some of the primary particles are disposed radially from a central part of the secondary particle toward an outer circumference thereof. The secondary particle has a ratio I(101)/I(001) of a diffraction peak intensity I(101) of a 101 plane to a peak intensity I(001) of a 001 plane, measured by an X-ray diffraction measurement, of up to 0.15.
    Type: Grant
    Filed: July 15, 2022
    Date of Patent: August 29, 2023
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Takuma Nakamura, Haruki Kaneda, Takehide Honma, Takaaki Ando, Koji Yamaji
  • Patent number: 11735726
    Abstract: A positive electrode active material for a nonaqueous electrolyte secondary battery is disclosed which contains a lithium-nickel-manganese composite oxide containing a secondary particle formed of a plurality of flocculated primary particles and a lithium-niobium compound. The positive electrode active material is represented by General Formula (1): LidNi1?a?b?cMnaMbNbcO2+? (M is at least one element selected from Co, W, Mo, V, Mg, Ca, Al, Ti, Cr, Zr, and Ta; and 0.03?a?0.60, 0?b?0.60, 0.02?c?0.08, a+b+c<1, 0.95?d?1.20, and 0???0.5, the lithium-nickel-manganese composite oxide has a (003)-plane crystallite diameter of at least 50 nm and up to 130 nm, the lithium-niobium compound is present on surfaces of the primary particles, and part of niobium in the positive electrode active material is solid-solved in the primary particles.
    Type: Grant
    Filed: December 25, 2017
    Date of Patent: August 22, 2023
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Haruki Kaneda, Yuki Koshika, Takuma Nakamura
  • Publication number: 20230253559
    Abstract: Provided are a positive electrode active material with which a nonaqueous electrolyte secondary battery having a high energy density can be obtained, a nickel-manganese composite hydroxide suitable as a precursor of the positive electrode active material, and production methods capable of easily producing these in an industrial scale. Provided is a nickel-manganese composite hydroxide represented by General Formula (1): NixMnyMz(OH)2+? and containing a secondary particle formed of a plurality of flocculated primary particles. The nickel-manganese composite hydroxide has a half width of a diffraction peak of a (001) plane obtained by X-ray diffraction measurement of at least 0.10° and up to 0.40° and has a degree of sparsity/density represented by [(void area within secondary particle/cross section of secondary particle)×100](%) of at least 0.5% and up to 10%. Also provided is a production method of the nickel-manganese composite hydroxide.
    Type: Application
    Filed: April 13, 2023
    Publication date: August 10, 2023
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Haruki Kaneda, Yuki Koshika, Takaaki Ando
  • Publication number: 20230187625
    Abstract: The method for producing a positive electrode active material for a lithium ion secondary battery includes preparing a mixture containing at least a nickel-manganese composite compound, a lithium compound, and optionally one or both of a titanium compound and a niobium compound. The method also includes firing the mixture from 750° C. to 1000° C. so as to obtain the lithium-nickel-manganese composite oxide, in which the nickel-manganese composite compound contains at least nickel, manganese, and an element M, an amount of substance ratio (z) of titanium and an amount of substance ratio (w) of niobium to a total amount of substance of nickel, manganese, the element M, titanium, and niobium in the mixture satisfy 0.005?z?0.05, 0.001<w?0.03, (z+w)?0.06, and z>w, and at least a part of the niobium is segregated to a grain boundary between primary particles.
    Type: Application
    Filed: June 30, 2020
    Publication date: June 15, 2023
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Yuki Koshika, Haruki Kaneda, Yukihiro Goda
  • Publication number: 20230187624
    Abstract: A positive electrode active material that can achieve high thermal stability at low cost is provided. Provided is a positive electrode active material for a lithium ion secondary battery, the positive electrode active material containing a lithium-nickel-manganese composite oxide, in which metal elements constituting the lithium-nickel-manganese composite oxide include lithium (Li), nickel (Ni), manganese (Mn), cobalt (Co), titanium (Ti), niobium (Nb), and optionally zirconium (Zr), an amount of substance ratio of the elements is represented as Li:Ni:Mn:Co:Zr:Ti:Nb=a:b:c:d:e:f:g (provided that, 0.97?a?1.10, 0.80?b?0.88, 0.04?c?0.12, 0.04?d?0.10, 0?e?0.004, 0.003<f?0.030, 0.001<g?0.006, and b+c+d+e+f+g=1), in the amount of substance ratio, (f÷g)?0.030 and f>g are satisfied, and an amount of lithium to be eluted in water when the positive electrode active material is immersed in water is 0.20% by mass or less with respect to the entire positive electrode active material.
    Type: Application
    Filed: June 30, 2020
    Publication date: June 15, 2023
    Applicants: SUMITOMO METAL MINING CO., LTD., PANASONIC CORPORATION
    Inventors: Yuki Koshika, Haruki Kaneda, Sho Tsuruta, Takashi Ko, Fumiharu Niina
  • Patent number: 11670765
    Abstract: Provided are a positive electrode active material that can provide a nonaqueous electrolyte secondary battery having high energy density and excellent output characteristics, a nickel-manganese composite hydroxide as a precursor thereof, and methods for producing these. A nickel-manganese composite hydroxide is represented by General Formula (1): NixMnyMz(OH)2+? and contains a secondary particle formed of a plurality of flocculated primary particles. The nickel-manganese composite hydroxide has a half width of a diffraction peak of a (001) plane of at least 0.35° and up to 0.50° and has a degree of sparsity/density represented by [(a void area within the secondary particle/a cross section of the secondary particle)×100](%) within a range of greater than 10% and up to 25%.
    Type: Grant
    Filed: July 28, 2017
    Date of Patent: June 6, 2023
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Haruki Kaneda, Yuki Koshika, Takaaki Ando
  • Patent number: 11658297
    Abstract: Provided are a positive electrode active material with which a nonaqueous electrolyte secondary battery having a high energy density can be obtained, a nickel-manganese composite hydroxide suitable as a precursor of the positive electrode active material, and production methods capable of easily producing these in an industrial scale. Provided is a nickel-manganese composite hydroxide represented by General Formula (1): NixMnyMz(OH)2+? and containing a secondary particle formed of a plurality of flocculated primary particles. The nickel-manganese composite hydroxide has a half width of a diffraction peak of a (001) plane obtained by X-ray diffraction measurement of at least 0.10° and up to 0.40° and has a degree of sparsity/density represented by [(void area within secondary particle/cross section of secondary particle)×100](%) of at least 0.5% and up to 10%. Also provided is a production method of the nickel-manganese composite hydroxide.
    Type: Grant
    Filed: October 26, 2021
    Date of Patent: May 23, 2023
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Haruki Kaneda, Yuki Koshika, Takaaki Ando
  • Patent number: 11594726
    Abstract: A positive electrode active material for obtaining a lithium ion secondary battery, wherein capacity, electron conductivity, durability, and heat stability at the time of overcharge are improved, durability and heat stability being achieved at a high level, and including: a lithium nickel manganese composite oxide composed of secondary particles, in which a plurality of primary particles are flocculated, wherein the composite oxide is represented by a general formula (1): LidNi1-a-b-cMnaMbTicO2 (wherein, M is at least one kind of element selected from Co, W, Mo, V, Mg, Ca, Al, Cr, Zr and Ta, 0.05?a?0.60, 0?b?0.60, 0.02?c?0.08, 0.95?d?1.20), at least a part of titanium in the composite oxide is solid-solved in the primary particles, and, a lithium titanium compound exists on a surface of the positive electrode active material for the lithium ion secondary battery.
    Type: Grant
    Filed: September 25, 2018
    Date of Patent: February 28, 2023
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Takuma Nakamura, Haruki Kaneda, Yuki Koshika
  • Publication number: 20220399544
    Abstract: Provided are a nickel-manganese composite hydroxide capable of producing a secondary battery having a high particle fillability and excellent battery characteristics when used as a precursor of a positive electrode active material and a method for producing the same. A nickel-manganese composite hydroxide is represented by General Formula: NixMnyMz(OH)2+? and contains a secondary particle formed of a plurality of flocculated primary particles. The primary particles have an aspect ratio of at least 3, and at least some of the primary particles are disposed radially from a central part of the secondary particle toward an outer circumference thereof. The secondary particle has a ratio I(101)/I(001) of a diffraction peak intensity I(101) of a 101 plane to a peak intensity I(001) of a 001 plane, measured by an X-ray diffraction measurement, of up to 0.15.
    Type: Application
    Filed: July 15, 2022
    Publication date: December 15, 2022
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Takuma Nakamura, Haruki Kaneda, Takehide Honma, Takaaki Ando, Koji Yamaji
  • Publication number: 20220367869
    Abstract: A positive electrode active material that can achieve high thermal stability at low cost is provided. Provided is a positive electrode active material for a lithium ion secondary battery, the positive electrode active material containing a lithium-nickel-manganese composite oxide, in which metal elements constituting the lithium-nickel-manganese composite oxide include lithium (Li), nickel (Ni), manganese (Mn), cobalt (Co), titanium (Ti), niobium (Nb), and optionally zirconium (Zr), an amount of substance ratio of the elements is represented as Li:Ni:Mn:Co:Zr:Ti:Nb=a:b:c:d:e:f:g (provided that, 0.97?a?1.10, 0.80?b?0.88, 0.04?c?0.12, 0.04?d?0.10, 0?e?0.004, 0.003<f?0.030, 0.001<g?0.006, and b+c+d+e+f+g=1), and in the amount of substance ratio, (f+g)?0.030 and f>g are satisfied.
    Type: Application
    Filed: June 30, 2020
    Publication date: November 17, 2022
    Applicants: SUMITOMO METAL MINING CO., LTD., PANASONIC CORPORATION
    Inventors: Yuki Koshika, Haruki Kaneda, Sho Tsuruta, Takashi Ko, Fumiharu Niina
  • Publication number: 20220359860
    Abstract: The positive electrode active material has high capacity and high output and exhibiting excellent cycle characteristics when being used for a positive electrode of a non-aqueous electrolyte secondary battery. A positive electrode active material for a lithium ion secondary battery contains: a lithium-metal composite oxide containing secondary particles with a plurality of aggregated primary particles; and a compound containing lithium and tungsten present on surfaces of the primary particles. The amount of tungsten contained in the compound containing lithium and tungsten is 0.5 atom % or more and 3.0 atom % or less in terms of a ratio of the number of atoms of W with respect to the total number of atoms of Ni, Co, and an element M, and a conductivity when the positive electrode active material is compressed to 4.0 g/cm3 as determined by powder resistance measurement is 6×10?3 S/cm or less.
    Type: Application
    Filed: June 19, 2020
    Publication date: November 10, 2022
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Tomoko Nakayama, Haruki Kaneda
  • Patent number: 11476460
    Abstract: Provided are a nickel-manganese composite hydroxide capable of producing a secondary battery having a high particle fillability and excellent battery characteristics when used as a precursor of a positive electrode active material and a method for producing the same. A nickel-manganese composite hydroxide is represented by General Formula: NixMnyMz(OH)2+? and contains a secondary particle formed of a plurality of flocculated primary particles. The primary particles have an aspect ratio of at least 3, and at least some of the primary particles are disposed radially from a central part of the secondary particle toward an outer circumference thereof. The secondary particle has a ratio I(101)/I(001) of a diffraction peak intensity I(101) of a 101 plane to a peak intensity I(001) of a 001 plane, measured by an X-ray diffraction measurement, of up to 0.15.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: October 18, 2022
    Assignee: SUMITOMO METAL MINING CO., LTD.
    Inventors: Takuma Nakamura, Haruki Kaneda, Takehide Honma, Takaaki Ando, Koji Yamaji
  • Publication number: 20220293933
    Abstract: A positive electrode active material for a lithium ion secondary battery, including a lithium-nickel composite oxide having a hexagonal layered structure and configured by particles including at least either single primary particles or secondary particles with a plurality of aggregated primary particles, wherein the particles included in the positive electrode active material have a cross section having one or more crystal faces, and the one or more crystal faces in the particles have an average misorientation of 0.7° or less from a reference orientation of each of the one or more crystal faces.
    Type: Application
    Filed: August 28, 2020
    Publication date: September 15, 2022
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Haruki Kaneda, Yuki Koshika, Yuki Koyama
  • Publication number: 20220293938
    Abstract: Provided are a positive electrode active material that can provide a secondary battery extremely excellent in output characteristics and having sufficient volume energy density, a nickel-manganese composite hydroxide as a precursor thereof, and methods for producing these. A nickel-manganese composite hydroxide is represented by General Formula (1): NixMnyMz(OH)2+? and contains a secondary particle formed of a plurality of flocculated primary particles. The nickel-manganese composite hydroxide has a half width of a (001) plane of at least 0.40° and has an average degree of sparsity/density represented by [(a void area within the secondary particle/a cross section of the secondary particle)×100] (%) falling within a range of greater than 22% and up to 40%.
    Type: Application
    Filed: May 31, 2022
    Publication date: September 15, 2022
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Haruki Kaneda, Yuki Koshika, Takaaki Ando
  • Publication number: 20220285676
    Abstract: A positive electrode active material for a lithium ion secondary battery, the positive electrode active material including a lithium-nickel composite oxide having a hexagonal layered structure and configured by single primary particles or by single primary particles and secondary particles with a plurality of aggregated primary particles, wherein a number proportion of the single primary particles to all of the particles is 30% or more, a ratio of a (003) diffraction peak intensity I(003) to a (104) diffraction peak intensity I(104) (I(003)/I(104)) is 2.0 or more, and a degree of circularity is 0.93 or more and 1.00 or less.
    Type: Application
    Filed: August 28, 2020
    Publication date: September 8, 2022
    Applicant: SUMITOMO METAL MINING CO., LTD.
    Inventors: Haruki Kaneda, Yuki Koshika, Yuki Furuichi