Patents by Inventor Harvey E. Andresen

Harvey E. Andresen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8845863
    Abstract: Processes and systems for purifying ethylene oxide, including introducing a feed stream including ethylene oxide to a heat exchanger to heat the feed stream, feeding the heated feed stream to a distillation apparatus base below a first stage, removing from the distillation apparatus an impurity fraction as a top exit stream from the distillation apparatus located at a top take-off on the distillation apparatus, removing from the distillation apparatus an ethylene oxide stream of 99.7 weight percent purity, based on the total weight of the ethylene oxide stream, from the distillation apparatus, and removing from the distillation apparatus an aldehyde enriched fraction as a bottom stream from the distillation apparatus, where the aldehyde enriched fraction is fed directly to a glycol reactor.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: September 30, 2014
    Assignee: Dow Technology Investments LLC
    Inventors: Clarence P. Stadlwieser, Bernie B. Osborne, John P. Dever, Harvey E. Andresen, Michael L. Hutchison, Steven R. Osborne, Liping L. Zhang, Michael Habenschuss, Andrew Addie, Donald R. Culp
  • Patent number: 8500320
    Abstract: A gas mixer (10) for mixing a first gas stream with a second gas stream includes an impact labyrinth (24) in the first gas stream having structures (25), e.g., corrugated walls, forming a tortuous path through which the first gas stream must pass en route to a mixing point (20) in the gas mixer. The labyrinth fosters ignition of particles entrained in the first gas stream. Elongate, straight pipes (30) receive the first gas stream from the impact labyrinth (24) and carrying the first gas stream to the mixing point (20) the pipes (30) are positioned with a vessel (12) carrying the second gas stream. The pipes (30) have openings which are substantially aligned with the flow direction of the second gas stream at the mixing point (20) thereby introducing the first gas stream into the second gas stream in a low shear manner.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: August 6, 2013
    Assignee: Dow Technology Investments LLC
    Inventors: Harvey E. Andresen, Christopher P. Christenson, Charles W. Lipp, John R. Mayer, Thomas J. Kling, Victor R. Fey, Laurence G. Britton, Michael J. Rangitsch, Michael L. Hutchison, Matthias Schaefer
  • Patent number: 8500894
    Abstract: A method of mixing an oxygen gas with a hydrocarbon-containing gas includes the steps of wet scrubbing the oxygen gas in a wet scrubber, supplying oxygen gas from the wet scrubber to a gas mixer and mixing the oxygen gas with the hydrocarbon-containing gas in the gas mixer. Wet scrubbers for use in the method may take various forms, including packed-tower, bubble cap, and sparger-type wet scrubbers. The removal of the particulate matter reduces the risk of ignition of the hydrocarbon-containing gas in the gas mixer. The use of a wet scrubber in the oxygen supply line overcomes many problems currently faced with screen and filters, as per current practice.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: August 6, 2013
    Assignee: Dow Technology Investments LLC
    Inventors: Harvey E. Andresen, Christopher P. Christenson, Charles W. Lipp, John R. Mayer, Thomas J. Kling, Victor R. Fey, Laurence G. Britton, Michael J. Rangitsch, Michael L. Hutchison
  • Patent number: 8476464
    Abstract: Embodiments of the present disclosure provide processes, columns, and systems for removing acetaldehyde from alkylene oxide in a feed stream and for providing an alkylene oxide-water stream that can be directly transferred to a glycol reaction process. The alkylene oxide purification column includes a first section to convert a feed stream into a gas phase portion and a liquid phase portion and a second section located in the column above the first section to separate alkylene oxide from the acetaldehyde, water, and other impurities that enter the second section from the first section.
    Type: Grant
    Filed: August 6, 2012
    Date of Patent: July 2, 2013
    Assignee: Dow Technology Investments LLC
    Inventors: John F. Szul, James H. McCain, Floyd L. Pfeffer, Harvey E. Andresen, Phillip R. Fairchild, Kent E. Newman
  • Patent number: 8404189
    Abstract: A gas mixer is disclosed which includes a vessel (10) (e.g., pipe) containing a stream (12) of a first hydrocarbon-containing gas. The mixer includes a hollow pipe (14) located internal to the vessel containing a stream of a second gas, e.g., an oxygen-containing gas stream such as a stream of pure oxygen gas or air enriched with oxygen. The internal pipe further includes a mixer tip (30) at the peripheral end thereof. The mixer tip includes a body having an internal passage for conducting the second gas out of the pipe and an opening introducing the second gas stream into the first gas stream in a radial plane at an acute angle relative to the longitudinal axis of the pipe. The pipe further includes a deflector (20) on its external surface in longitudinal alignment with the opening of the mixer tip. The deflector serves to deflect any entrained particles within the first gas stream away from the mixing zone where the two streams mix, minimizing the risk of ignition of the hydrocarbon-containing gas.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: March 26, 2013
    Assignee: Dow Technology Investments LLC
    Inventors: Harvey E. Andresen, Christopher P. Christenson, Charles W. Lipp, John R. Mayer, Thomas J. Kling, Victor R. Fey, Laurence G. Britton, Michael J. Rangitsch, Michael L. Hutchison
  • Patent number: 8404190
    Abstract: A hydrocarbon-containing gas is mixed with an oxygen-containing gas in a gas mixer in the presence of a water mist. The water mist surrounds and contacts entrained particles in either the oxygen-containing gas stream or the hydrocarbon-containing gas stream. The water acts to suppress and prevent ignition of the hydrocarbon gas in the mixer by serving as a sink for heat created by energetic collisions between such particles and structures within the gas mixer. The water mist also acts to quench ignition caused by such collisions. The water mist can be introduced into the gas mixer in a number of different configurations, including via nozzles injecting a mist into a hydrocarbon gas manifold or an oxygen gas manifold, nozzles placed within the gas mixer adjacent to ends of the oxygen supply pipes, and nozzles placed coaxially within the oxygen supply pipes in the gas mixer.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: March 26, 2013
    Assignee: Dow Technology Investments LLC
    Inventors: Harvey E. Andresen, Christopher P. Christenson, Charles W. Lipp, John R. Mayer, Thomas J. Kling, Victor R. Fey, Laurence G. Britton, Michael J. Rangitsch, Michael L. Hutchison
  • Patent number: 8343433
    Abstract: Apparatus, methods, and processes are provided for a tube reactor including multiple, substantially parallel reaction tubes arranged within a tube reactor shell, the reaction tubes spaced apart such that a thermal fluid can flow between the tubes and transfer heat between the tubes and the thermal fluid during operation; an inlet head defining an inlet head space, where the inlet head space is in fluid communication with an inlet end of the reaction tubes, and an outlet head including an outlet head shell and at least one insert positioned within an outlet head space defined by the outlet head, where the insert defines a reduced volume outlet head space relative to that defined by the outlet head, and where the reduced volume outlet head space is in fluid communication with an outlet end of the reaction tubes and in fluid communication with a reactor outlet.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: January 1, 2013
    Assignee: Dow Technology Investments LLC
    Inventors: Fred A. Conneway, Harvey E. Andresen, Clarence P. Stadlwieser, Donald L. Kurle, Bernie B. Osborne
  • Patent number: 8334395
    Abstract: A hydrocarbon-containing gas is mixed with an oxygen gas in a gas mixer in the presence of coarse water droplet environment, e.g., a ‘rainy’ or ‘driving rainstorm’ environment in which the water droplets generally have a size greater than 200 microns SMD. The water droplets surround and contact entrained particles in either the oxygen gas stream or the hydrocarbon-containing gas stream. The water acts to suppress, prevent and quench ignition of the hydrocarbon gas in the mixer which would otherwise be caused by energetic collisions between such particles and structures within the gas mixer. In one configuration the gas mixer includes water pipes having coarse water droplet-producing nozzles at the peripheral end thereof concentrically located within oxygen supply pipes. Additionally, nozzles introduce coarse water droplets into a pipe carrying the hydrocarbon gas and forming a mixing chamber for the hydrocarbon and oxygen gases.
    Type: Grant
    Filed: November 7, 2008
    Date of Patent: December 18, 2012
    Assignee: Dow Technology Investments LLC
    Inventors: Harvey E. Andresen, Christopher P. Christenson, Charles W. Lipp, John R. Mayer, Thomas J. Kling, Victor R. Fey, Laurence G. Britton, Michael J. Rangitsch, Michael L. Hutchison
  • Publication number: 20120302776
    Abstract: Embodiments of the present disclosure provide processes, columns, and systems for removing acetaldehyde from alkylene oxide in a feed stream and for providing an alkylene oxide-water stream that can be directly transferred to a glycol reaction process. The alkylene oxide purification column includes a first section to convert a feed stream into a gas phase portion and a liquid phase portion and a second section located in the column above the first section to separate alkylene oxide from the acetaldehyde, water, and other impurities that enter the second section from the first section.
    Type: Application
    Filed: August 6, 2012
    Publication date: November 29, 2012
    Applicant: DOW TECHNOLOGY INVESTMENTS LLC
    Inventors: John F. Szul, James H. McCain, Floyd L. Pfeffer, Harvey E. Andresen, Phillip R. Fairchild, Kent E. Newman
  • Patent number: 8257558
    Abstract: Embodiments of the present disclosure provide processes, columns, and systems for removing acetaldehyde from alkylene oxide in a feed stream and for providing an alkylene oxide-water stream that can be directly transferred to a glycol reaction process. The alkylene oxide purification column includes a first section to convert a feed stream into a gas phase portion and a liquid phase portion and a second section located in the column above the first section to separate alkylene oxide from the acetaldehyde, water, and other impurities that enter the second section from the first section.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: September 4, 2012
    Assignee: Dow Technology Investments LLC
    Inventors: John F. Szul, James H. Mccain, Floyd L. Pfeffer, Harvey E. Andresen, Phillip R. Fairchild, Kent E. Newman
  • Patent number: 8183400
    Abstract: Embodiments of the present disclosure include processes and systems for recovering alkylene oxide. System embodiments include a stripping section located in an alkylene oxide recovery column to convert a feed stream comprising to a first gas phase portion comprising alkylene oxide, a condensing zone comprising at least a first condenser and a second condenser configured in series, and a reabsorption region located in the alkylene oxide recovery column above the last of the at least two condensers.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: May 22, 2012
    Assignee: Dow Technology Investments LLC
    Inventors: John F. Szul, James H. Mccain, Floyd L. Pfeffer, Harvey E. Andresen, Phillip R. Fairchild, Kent E. Newman
  • Patent number: 8129551
    Abstract: The invention relates to improved systems for recovery of alkylene oxide from feed streams containing the same in an alkylene oxide recovery column. The invention also relates to improved processes for recovery of alkylene oxide from feed streams containing the same in an alkylene oxide recovery column.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: March 6, 2012
    Assignee: Dow Technology Investments LLC
    Inventors: John F. Szul, James H. Mccain, Floyd L. Pfeffer, Harvey E. Andresen, Phillip R. Fairchild, Kent E. Newman
  • Patent number: 8053586
    Abstract: Systems and processes for recovering alkylene oxide, including an alkylene oxide recovery column including a stripping section located in the column to convert a portion of a feed stream to a gas phase including alkylene oxide; a reabsorption section in the column above the stripping section including a water stream to reabsorb the alkylene oxide in the gas phase portion and to produce an aqueous solution, a first stripping gas to strip carbon dioxide and oxygen from the aqueous solution by converting a portion of the aqueous solution to a gaseous portion, producing an alkylene oxide stream, and a side take-off located at a bottom portion of the reabsorption section for removal of the alkylene oxide stream; a condenser to partially condense the gas phase portion; and a top take-off for removal of a light impurity fraction.
    Type: Grant
    Filed: July 24, 2009
    Date of Patent: November 8, 2011
    Assignee: Dow Technology Investments LLC
    Inventors: Bernie B. Osborne, Fred A. Conneway, Clarence P. Stadlwieser, Harvey E. Andresen
  • Publication number: 20110034709
    Abstract: Apparatus, methods, and processes are provided for a tube reactor including multiple, substantially parallel reaction tubes arranged within a tube reactor shell, the reaction tubes spaced apart such that a thermal fluid can flow between the tubes and transfer heat between the tubes and the thermal fluid during operation; an inlet head defining an inlet head space, where the inlet head space is in fluid communication with an inlet end of the reaction tubes, and an outlet head including an outlet head shell and at least one insert positioned within an outlet head space defined by the outlet head, where the insert defines a reduced volume outlet head space relative to that defined by the outlet head, and where the reduced volume outlet head space is in fluid communication with an outlet end of the reaction tubes and in fluid communication with a reactor outlet.
    Type: Application
    Filed: December 8, 2008
    Publication date: February 10, 2011
    Inventors: Fred A. Conneway, Harvey E. Andresen, Clarence P. Stadlwieser, Donald L. Kurle, Bernie B. Osborne
  • Publication number: 20100307337
    Abstract: A gas mixer (10) for mixing a first gas stream with a second gas stream includes an impact labyrinth (24) in the first gas stream having structures (25), e.g., corrugated walls, forming a tortuous path through which the first gas stream must pass en route to a mixing point (20) in the gas mixer. The labyrinth fosters ignition of particles entrained in the first gas stream. Elongate, straight pipes (30) receive the first gas stream from the impact labyrinth (24) and carrying the first gas stream to the mixing point (20) the pipes (30) are positioned with a vessel (12) carrying the second gas stream. The pipes (30) have openings which are substantially aligned with the flow direction of the second gas stream at the mixing point (20) thereby introducing the first gas stream into the second gas stream in a low shear manner.
    Type: Application
    Filed: November 12, 2008
    Publication date: December 9, 2010
    Applicant: DOW TECHNOLOGY INVESTMENTS LLC
    Inventors: Harvey E. Andresen, Christopher P. Christenson, Charles W. Lipp, John R. Mayer, Thomas J. Kling, Victor R. Fey, Laurence G. Britton, Michael J. Rangitsch, Michael L. Hutchison, Matthias Schaefer
  • Publication number: 20100263535
    Abstract: A method of mixing an oxygen gas with a hydrocarbon-containing gas includes the steps of wet scrubbing the oxygen gas in a wet scrubber, supplying oxygen gas from the wet scrubber to a gas mixer and mixing the oxygen gas with the hydrocarbon-containing gas in the gas mixer. Wet scrubbers for use in the method may take various forms, including packed-tower, bubble cap, and sparger-type wet scrubbers. The removal of the particulate matter reduces the risk of ignition of the hydrocarbon-containing gas in the gas mixer. The use of a wet scrubber in the oxygen supply line overcomes many problems currently faced with screen and filters, as per current practice.
    Type: Application
    Filed: November 12, 2008
    Publication date: October 21, 2010
    Applicant: DOW TECHNOLOGY INVESTMENTS LLC
    Inventors: Harvey E. Andresen, Christopher P. Christenson, Charles W. Lipp, John R. Mayer, Thomas J. Kling, Victor R. Fey, Laurence G. Britton, Michael J. Rangitsch, Michael L. Hutchison
  • Publication number: 20100204495
    Abstract: A hydrocarbon-containing gas is mixed with an oxygen-containing gas in a gas mixer in the presence of a water mist. The water mist surrounds and contacts entrained particles in either the oxygen-containing gas stream or the hydrocarbon-containing gas stream. The water acts to suppress and prevent ignition of the hydrocarbon gas in the mixer by serving as a sink for heat created by energetic collisions between such particles and structures within the gas mixer. The water mist also acts to quench ignition caused by such collisions. The water mist can be introduced into the gas mixer in a number of different configurations, including via nozzles injecting a mist into a hydrocarbon gas manifold or an oxygen gas manifold, nozzles placed within the gas mixer adjacent to ends of the oxygen supply pipes, and nozzles placed coaxially within the oxygen supply pipes in the gas mixer.
    Type: Application
    Filed: November 7, 2008
    Publication date: August 12, 2010
    Applicant: DOW TECHNOLOGY INVESTMENTS LLC
    Inventors: Harvey E. Andresen, Christopher P. Christenson, Charles W. Lipp, John R. Mayer, Thomas J. Kling, Victor R. Fey, Laurence G. Britton, Michael J. Rangitsch, Michael L. Hutchison
  • Publication number: 20100204496
    Abstract: A hydrocarbon-containing gas is mixed with an oxygen gas in a gas mixer in the presence of coarse water droplet environment, e.g., a ‘rainy’ or ‘driving rainstorm’ environment in which the water droplets generally have a size greater than 200 microns SMD. The water droplets surround and contact entrained particles in either the oxygen gas stream or the hydrocarbon-containing gas stream. The water acts to suppress, prevent and quench ignition of the hydrocarbon gas in the mixer which would otherwise be caused by energetic collisions between such particles and structures within the gas mixer. In one configuration the gas mixer includes water pipes having coarse water droplet-producing nozzles at the peripheral end thereof concentrically located within oxygen supply pipes. Additionally, nozzles introduce coarse water droplets into a pipe carrying the hydrocarbon gas and forming a mixing chamber for the hydrocarbon and oxygen gases.
    Type: Application
    Filed: November 7, 2008
    Publication date: August 12, 2010
    Applicant: DOW TECHNOLOGY INVESTMENTS LLC
    Inventors: Harvey E. Andresen, Christopher P. Christenson, Charles W. Lipp, John R. Mayer, Thomas J. Kling, Victor R. Fey, Laurence G. Britton, Michael J. Rangitsch, Michael L. Hutchison
  • Publication number: 20100191005
    Abstract: A gas mixer is disclosed which includes a vessel (10) (e.g., pipe) containing a stream (12) of a first hydrocarbon-containing gas. The mixer includes a hollow pipe (14) located internal to the vessel containing a stream of a second gas, e.g., an oxygen-containing gas stream such as a stream of pure oxygen gas or air enriched with oxygen. The internal pipe further includes a mixer tip (30) at the peripheral end thereof. The mixer tip includes a body having an internal passage for conducting the second gas out of the pipe and an opening introducing the second gas stream into the first gas stream in a radial plane at an acute angle relative to the longitudinal axis of the pipe. The pipe further includes a deflector (20) on its external surface in longitudinal alignment with the opening of the mixer tip. The deflector serves to deflect any entrained particles within the first gas stream away from the mixing zone where the two streams mix, minimizing the risk of ignition of the hydrocarbon-containing gas.
    Type: Application
    Filed: November 12, 2008
    Publication date: July 29, 2010
    Applicant: DOW TECHNOLOGY INVESTMENTS LLC
    Inventors: Harvey E. Andresen, Christopher P. Christenson, Charles W. Lipp, John R. Mayer, Thomas J. Kling, Victor R. Fey, Laurence G. Britton, Michael J. Rangitsch, Michael L. Hutchison
  • Publication number: 20100063306
    Abstract: Systems and processes for recovering alkylene oxide, including an alkylene oxide recovery column including a stripping section located in the column to convert a portion of a feed stream to a gas phase including alkylene oxide; a reabsorption section in the column above the stripping section including a water stream to reabsorb the alkylene oxide in the gas phase portion and to produce an aqueous solution, a first stripping gas to strip carbon dioxide and oxygen from the aqueous solution by converting a portion of the aqueous solution to a gaseous portion, producing an alkylene oxide stream, and a side take-off located at a bottom portion of the reabsorption section for removal of the alkylene oxide stream; a condenser to partially condense the gas phase portion; and a top take-off for removal of a light impurity fraction.
    Type: Application
    Filed: July 24, 2009
    Publication date: March 11, 2010
    Inventors: Bernie B. Osborne, Fred A. Conneway, Clarence P. Stadlwieser, Harvey E. Andresen