Patents by Inventor Hatsuo Matsumoto

Hatsuo Matsumoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7427909
    Abstract: A coil component (100) comprising coil-containing insulator enclosure and a magnetic core (80). The coil-containing insulator enclosure is obtained by enclosing a coil (30), except for end portions (12, 22) of the coil (30), with an insulator (50), wherein the insulator (50) comprises at least a first resin. The magnetic core (80) is made of a mixture of a second resin (82) and powder, which comprises magnetic powder (84). The coil-containing insulator enclosure is embedded in the magnetic core (80).
    Type: Grant
    Filed: June 10, 2004
    Date of Patent: September 23, 2008
    Assignees: Nec Tokin Corporation, Denso Corporation
    Inventors: Kazuyuki Ono, Takashi Yanbe, Hatsuo Matsumoto
  • Patent number: 6995643
    Abstract: In order to provide an inductance part having excellent DC superposition characteristic and core-loss, a magnetically biasing magnet, which is disposed in a magnetic gap of a magnetic core, is a bond magnet comprising magnetic powder and plastic resin with the content of the resin being 20% or more on the base of volumetric ratio and which has a specific resistance of 0.1?·cm or more. The magnetic powder used is rare-earth magnetic powder having an intrinsic coercive force of 5 kOe or more, Curie point of 300° C. or more, and an average particle size of 2.0–50 ?m. A magnetically biasing magnet used in an inductance part that is treated by the reflow soldering method has a resin content of 30% or more and the magnetic powder used therein is Sm—Co magnetic powder having an intrinsic coercive force of 10 kOe or more, Curie point of 500° C. or more, and an average particle size of 2.5–50 ?m. A thin magnet having a thickness of 500 ?m or less can be realized for a small-sized inductance part.
    Type: Grant
    Filed: January 6, 2005
    Date of Patent: February 7, 2006
    Assignee: NEC Tokin Corporation
    Inventors: Teruhiko Fujiwara, Masayoshi Ishii, Haruki Hoshi, Keita Isogai, Hatsuo Matsumoto, Toru Ito, Tamiko Ambo
  • Publication number: 20050116804
    Abstract: In order to provide an inductance part having excellent DC superposition characteristic and core-loss, a magnetically biasing magnet, which is disposed in a magnetic gap of a magnetic core, is a bond magnet comprising magnetic powder and plastic resin with the content of the resin being 20% or more on the base of volumetric ratio and which has a specific resistance of 0.1 ?·cm or more. The magnetic powder used is rare-earth magnetic powder having an intrinsic coercive force of 5 kOe or more, Curie point of 300° C. or more, and an average particle size of 2.0-50 ?m. A magnetically biasing magnet used in an inductance part that is treated by the reflow soldering method has a resin content of 30% or more and the magnetic powder used therein is Sm—Co magnetic powder having an intrinsic coercive force of 10 kOe or more, Curie point of 500° C. or more, and an average particle size of 2.5-50 ?m. A thin magnet having a thickness of 500 ?m or less can be realized for a small-sized inductance part.
    Type: Application
    Filed: January 6, 2005
    Publication date: June 2, 2005
    Applicant: NEC Tokin Corporation
    Inventors: Teruhiko Fujiwara, Masayoshi Ishii, Haruki Hoshi, Keita Isogai, Hatsuo Matsumoto, Toru Ito, Tamiko Ambo
  • Patent number: 6856231
    Abstract: In order to provide an inductance part having excellent DC superposition characteristic and core-loss, a magnetically biasing magnet, which is disposed in a magnetic gap of a magnetic core, is a bond magnet comprising magnetic powder and plastic resin with the content of the resin being 20% or more on the base of volumetric ratio and which has a specific resistance of 0.1?•cm or more. The magnetic powder used is rare-earth magnetic powder having an intrinsic coercive force of 5 kOe or more, Curie point of 300° C. or more, and an average particle size of 2.0-50 ?m. A magnetically biasing magnet used in an inductance part that is treated by the reflow soldering method has a resin content of 30% or more and the magnetic powder used therein is Sm—Co magnetic powder having an intrinsic coercive force of 10 kOe or more, Curie point of 500° C. or more, and an average particle size of 2.5-50 ?m. A thin magnet having a thickness of 500 ?m or less can be realized for a small-sized inductance part.
    Type: Grant
    Filed: September 10, 2001
    Date of Patent: February 15, 2005
    Assignee: NEC Tokin Corporaton
    Inventors: Teruhiko Fujiwara, Masayoshi Ishii, Haruki Hoshi, Keita Isogai, Hatsuo Matsumoto, Toru Ito, Tamiko Ambo
  • Publication number: 20050012581
    Abstract: A coil component (100) comprises a coil-containing insulator enclosure and a magnetic core (80). The coil-containing insulator enclosure can be obtained by enclosing a coil (30), except for end portions (12, 22) of the coil (30), with an insulator (50), wherein the insulator (50) comprises at least first resin. The magnetic core (80) is made of a mixture of a second resin (82) and powder, which comprises at least magnetic powder (84). The coil-containing insulator enclosure is embedded in the magnetic core (80).
    Type: Application
    Filed: June 10, 2004
    Publication date: January 20, 2005
    Applicant: NEC TOKIN CORPORATION
    Inventors: Kazuyuki Ono, Takashi Yanbe, Hatsuo Matsumoto
  • Publication number: 20050007232
    Abstract: A magnetic core is obtained by hardening or curing a mixture of magnetic powder and resin. The magnetic core shows a superior DC bias characteristic which does not become drastically saturated but is gently saturated even beyond 1000*103/4? [A/m]. Therefore, the magnetic core has sufficient relative permeability more than ten.
    Type: Application
    Filed: June 10, 2004
    Publication date: January 13, 2005
    Applicant: NEC TOKIN CORPORATION
    Inventors: Kazuyuki Ono, Takashi Yanbe, Hatsuo Matsumoto
  • Publication number: 20040168303
    Abstract: An inductor component contains a drum magnetic core made of a magnetic material having a structure including integrated flanges at both ends of a columnar material, a coil wound around the columnar material in the drum magnetic core and placed between the flanges, and a permanent magnet placed in the neighborhood of the drum magnetic core with the coil wound around. This inductor component contains a sleeve core fitted to the outside of the drum magnetic core. The permanent magnet is placed in at least one gap in a closed magnetic circuit formed with the drum magnetic core and the sleeve core in order to apply a direct-current magnetic field in the direction opposite to the direction of a magnetic field generated by a magnetomotive force due to the coil.
    Type: Application
    Filed: March 1, 2004
    Publication date: September 2, 2004
    Applicant: NEC TOKIN CORPORATION
    Inventors: Hatsuo Matsumoto, Toru Ito, Masahiro Kondo, Ryutaro Isoda, Toshiya Sato, Tadakuni Sato, Teruhiko Fujiwara, Masayoshi Ishii, Haruki Hoshi
  • Patent number: 6778056
    Abstract: An inductance component comprises a magnetic core having at least one magnetic gap, means for generating a direct-current biased magnetic field produced by mounting a permanent magnet in the vicinity of a generally closed magnetic circuit which passes through the magnetic gap in the magnetic core or on the outside thereof, and a coil wound around the magnetic core, wherein the permanent magnet is mounted near the magnetic gap at one or more legs of the magnetic core which sandwich the magnetic gap.
    Type: Grant
    Filed: August 1, 2001
    Date of Patent: August 17, 2004
    Assignee: NEC Tokin Corporation
    Inventors: Toru Ito, Hatsuo Matsumoto, Teruhiko Fujiwara, Kazuyuki Okita, Toshiya Sato
  • Patent number: 6710693
    Abstract: An inductor component contains a drum magnetic core made of a magnetic material having a structure including integrated flanges at both ends of a columnar material, a coil wound around the columnar material in the drum magnetic core and placed between the flanges, and a permanent magnet placed in the neighborhood of the drum magnetic core with the coil wound around. This inductor component contains a sleeve core fitted to the outside of the drum magnetic core. The permanent magnet is placed in at least one gap in a closed magnetic circuit formed with the drum magnetic core and the sleeve core in order to apply a direct-current magnetic field in the direction opposite to the direction of a magnetic field generated by a magnetomotive force due to the coil.
    Type: Grant
    Filed: March 22, 2002
    Date of Patent: March 23, 2004
    Assignee: NEC Tokin Corporation
    Inventors: Hatsuo Matsumoto, Toru Ito, Masahiro Kondo, Ryutaro Isoda, Toshiya Sato, Tadakuni Sato, Teruhiko Fujiwara, Masayoshi Ishii, Haruki Hoshi
  • Patent number: 6621398
    Abstract: Disposed in a magnetic gap of a magnetic core, a magnetically biasing permanent magnet is a bond magnet comprising rare-earth magnetic powder and a binder resin. The rare-earth magnetic powder has an intrinsic coercive force of 5 kOe or more, a Curie temperature of 300° C. or more, and an average particle size of 2.0-50 &mgr;m. The rare-earth magnetic power has a surface coated with a metallic layer containing an oxidation-resistant metal. In order to enable a surface-mount to reflow, the rare-earth magnetic powder may have the intrinsic coercive force of 10 kOe or more, the Curie temperature of 500° C. and the average particle size of 2.5-50 &mgr;m. In addition, to prevent specific resistance from degrading, the metallic layer desirably may be coated with a glass layer consisting of low-melting glass having a softening point less than a melting point of the oxidation-resistant metal.
    Type: Grant
    Filed: November 28, 2001
    Date of Patent: September 16, 2003
    Assignee: NEC Tokin Corporation
    Inventors: Teruhiko Fujiwara, Masayoshi Ishii, Haruki Hoshi, Keita Isogai, Hatsuo Matsumoto, Toru Ito, Tamiko Ambo
  • Patent number: 6611187
    Abstract: A magnetic core has an open magnetic path and includes a magnetic body forming the open magnetic path and having a soft magnetic property, and a permanent magnet at least at one end of the magnetic path of the magnetic body. A coil assembly includes the magnetic core having the open magnetic path. The magnetic core includes the magnetic body forming the open magnetic path and having the soft magnetic property. The coil assembly also includes the permanent magnet at least at one end of the magnetic path of the magnetic body, and at least one coil having at least one turn wound around the magnetic core. A power supply circuit includes the coil assembly. The coil assembly includes the magnetic core having the open magnetic path. The magnetic core includes the magnetic body forming the open magnetic path and having the soft magnetic property.
    Type: Grant
    Filed: October 24, 2001
    Date of Patent: August 26, 2003
    Assignee: NEC Tokin Corporation
    Inventors: Hatsuo Matsumoto, Teruhiko Fujiwara, Hisao Nishino, Toru Ito, Takao Yamada, Masahiro Kondo
  • Publication number: 20020190830
    Abstract: An inductor component contains a drum magnetic core made of a magnetic material having a structure including integrated flanges at both ends of a columnar material, a coil wound around the columnar material in the drum magnetic core and placed between the flanges, and a permanent magnet placed in the neighborhood of the drum magnetic core with the coil wound around. This inductor component contains a sleeve core fitted to the outside of the drum magnetic core. The permanent magnet is placed in at least one gap in a closed magnetic circuit formed with the drum magnetic core and the sleeve core in order to apply a direct-current magnetic field in the direction opposite to the direction of a magnetic field generated by a magnetomotive force due to the coil.
    Type: Application
    Filed: March 22, 2002
    Publication date: December 19, 2002
    Applicant: Tokin Corporation
    Inventors: Hatsuo Matsumoto, Toru Ito, Masahiro Kondo, Ryutaro Isoda, Toshiya Sato, Tadakuni Sato, Teruhiko Fujiwara, Masayoshi Ishii, Haruki Hoshi
  • Publication number: 20020159277
    Abstract: A magnetic core has an open magnetic path and includes a magnetic body forming the open magnetic path and having a soft magnetic property, and a permanent magnet at least at one end of the magnetic path of the magnetic body. A coil assembly includes the magnetic core having the open magnetic path. The magnetic core includes the magnetic body forming the open magnetic path and having the soft magnetic property. The coil assembly also includes the permanent magnet at least at one end of the magnetic path of the magnetic body, and at least one coil having at least one turn wound around the magnetic core. A power supply circuit includes the coil assembly. The coil assembly includes the magnetic core having the open magnetic path. The magnetic core includes the magnetic body forming the open magnetic path and having the soft magnetic property.
    Type: Application
    Filed: October 24, 2001
    Publication date: October 31, 2002
    Applicant: Tokin Corporation
    Inventors: Hatsuo Matsumoto, Teruhiko Fujiwara, Hisao Nishino, Toru Ito, Takao Yamada, Masahiro Kondo
  • Publication number: 20020149458
    Abstract: In order to provide an inductance part having excellent DC superposition characteristic and core-loss, a magnetically biasing magnet, which is disposed in a magnetic gap of a magnetic core, is a bond magnet comprising magnetic powder and plastic resin with the content of the resin being 20% or more on the base of volumetric ratio and which has a specific resistance of 0.1 &OHgr;·cm or more. The magnetic powder used is rare-earth magnetic powder having an intrinsic coercive force of 5 kOe or more, Curie point of 300° C. or more, and an average particle size of 2.0-50 &mgr;m. A magnetically biasing magnet used in an inductance part that is treated by the reflow soldering method has a resin content of 30% or more and the magnetic powder used therein is Sm—Co magnetic powder having an intrinsic coercive force of 10 kOe or more, Curie point of 500° C. or more, and an average particle size of 2.5-50 &mgr;m.
    Type: Application
    Filed: September 10, 2001
    Publication date: October 17, 2002
    Applicant: TOKIN CORPORATION
    Inventors: Teruhiko Fujiwara, Masayoshi Ishii, Haruki Hoshi, Keita Isogai, Hatsuo Matsumoto, Toru Ito, Tamiko Ambo
  • Publication number: 20020109571
    Abstract: Disposed in a magnetic gap of a magnetic core, a magnetically biasing permanent magnet is a bond magnet comprising rare-earth magnetic powder and a binder resin. The rare-earth magnetic powder has an intrinsic coercive force of 5 kOe or more, a Curie temperature of 300° C. or more, and an average particle size of 2.0-50 &mgr;m. The rare-earth magnetic power has a surface coated with a metallic layer containing an oxidation-resistant metal. In order to enable a surface-mount to reflow, the rare-earth magnetic powder may have the intrinsic coercive force of 10 kOe or more, the Curie temperature of 500° C. and the average particle size of 2.5-50 &mgr;m. In addition, to prevent specific resistance from degrading, the metallic layer desirably may be coated with a glass layer consisting of low-melting glass having a softening point less than a melting point of the oxidation-resistant metal.
    Type: Application
    Filed: November 28, 2001
    Publication date: August 15, 2002
    Applicant: Tokin Corporation
    Inventors: Teruhiko Fujiwara, Masayoshi Ishii, Haruki Hoshi, Keita Isogai, Hatsuo Matsumoto, Toru Ito, Tamiko Ambo
  • Publication number: 20020033747
    Abstract: An inductance component comprises a magnetic core having at least one magnetic gap, means for generating a direct-current biased magnetic field produced by mounting a permanent magnet in the vicinity of a generally closed magnetic circuit which passes through the magnetic gap in the magnetic core or on the outside thereof, and a coil wound around the magnetic core, wherein the permanent magnet is mounted near the magnetic gap at one or more legs of the magnetic core which sandwich the magnetic gap.
    Type: Application
    Filed: August 1, 2001
    Publication date: March 21, 2002
    Applicant: Tokin Corporation
    Inventors: Toru Ito, Hatsuo Matsumoto, Teruhiko Fujiwara, Kazuyuki Okita, Toshiya Sato
  • Patent number: 4210412
    Abstract: Method of transfer printing for cellulosic textile articles by pretreating the article with a polyhydric alcohol, squeezing and drying the article, superposing the article with a transfer sheet printed with an ink containing a sublimable disperse dye and pressing the assembly under heating.
    Type: Grant
    Filed: July 23, 1973
    Date of Patent: July 1, 1980
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Kiyoshi Yamane, Shunzo Abe, Shuzo Sawada, Hatsuo Matsumoto
  • Patent number: 4027345
    Abstract: A method of transfer printing, wherein a release layer is formed on a temporary support; printing a pattern on said release layer with an ink containing coloring matter therein to obtain a transfer sheet; superposing an article to be transfer-printed on the printed surface of said transfer sheet; heating the superposed aggregate under pressure to transfer the release layer with the pattern onto said article to be transfer-printed; fixing the coloring matter to said article, and then soaping said article to remove the release layer, characterized in that the release layer consists of (1) 10-90 wt. percent of one or more thermoplastic polymers having excellent film-forming properties and water-solubility or alkaline water solubility as well as organic solvent solubility and (2) 90 to 10 wt. percent of one or more plasticizers having a melting point between 30.degree. and 120.degree.
    Type: Grant
    Filed: June 12, 1975
    Date of Patent: June 7, 1977
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Michio Fujisawa, Hatsuo Matsumoto, Shuzo Sawada, Kiyoshi Yamane, Hideo Kato, Takayuki Shimizu, Shigeo Kato