Patents by Inventor Heather L. Getty

Heather L. Getty has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8535369
    Abstract: A prosthesis delivery and deployment device includes an elongate and flexible outer catheter. The outer catheter has a tubular wall of layered construction, including translucent layers, opaque layers, and a braid composed of helically wound metal filaments. The outer catheter has a translucent distal adapted to constrain a radially self-expanding prosthesis in a radially reduced, axially elongated state. Because the stent constraining region is translucent, an endoscope can be used to visually monitor the stent when so constrained. Radiopaque markers can be mounted to the outer catheter and to an inner catheter used to deploy the prosthesis, to afford a combined visual and fluoroscopic monitoring for enhanced accuracy in positioning the prosthesis, both before and during its deployment.
    Type: Grant
    Filed: July 20, 2012
    Date of Patent: September 17, 2013
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Jennifer E. Raeder-Devens, Susan I. Shelso, James F. Hemerick, Eric M. Schneider, Heather L. Getty, Doreen M. Borgmann, Kakao Sisombath, Jeffrey A. Helgerson
  • Publication number: 20120310325
    Abstract: A prosthesis delivery and deployment device includes an elongate and flexible outer catheter. The outer catheter has a tubular wall of layered construction, including translucent layers, opaque layers, and a braid composed of helically wound metal filaments. The outer catheter has a translucent distal adapted to constrain a radially self-expanding prosthesis in a radially reduced, axially elongated state. Because the stent constraining region is translucent, an endoscope can be used to visually monitor the stent when so constrained. Radiopaque markers can be mounted to the outer catheter and to an inner catheter used to deploy the prosthesis, to afford a combined visual and fluoroscopic monitoring for enhanced accuracy in positioning the prosthesis, both before and during its deployment.
    Type: Application
    Filed: July 20, 2012
    Publication date: December 6, 2012
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Jennifer E. Raeder-Devens, Susan I. Shelso, James F. Hemerick, Eric M. Schneider, Heather L. Getty, Doreen M. Borgmann, Kakao Sisombath, Jeffrey A. Helgerson
  • Patent number: 8226702
    Abstract: A prosthesis delivery and deployment device includes an elongate and flexible outer catheter. The outer catheter has a tubular wall of layered construction, including a translucent inner liner running the complete catheter length, and three outer layers including a translucent distal layer, an opaque medial layer and an opaque proximal outer layer. The outer layers are adjacent one another and are bonded to the liner. A braid composed of helically wound metal filaments is disposed between the liner and the proximal and medial outer layers, and includes a distal portion between the liner and a proximal portion of the distal outer layer. The liner and distal outer layer provide a translucent distal region of the catheter that is adapted to constrain a radially self-expanding prosthesis in a radially reduced, axially elongated state. Because the stent constraining region is translucent, an endoscope can be used to visually monitor the stent when so constrained.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: July 24, 2012
    Assignee: Boston Scientific Scimed, Inc.
    Inventors: Jennifer E Raeder-Devens, Susan I Shelso, James F Hemerick, Eric M Schneider, Heather L Getty, Doreen M Borgmann, Kakao Sisombath, Jeffrey A Helgerson
  • Publication number: 20090228092
    Abstract: A prosthesis delivery and deployment device includes an elongate and flexible outer catheter. The outer catheter has a tubular wall of layered construction, including a translucent inner liner running the complete catheter length, and three outer layers including a translucent distal layer, an opaque medial layer and an opaque proximal outer layer. The outer layers are adjacent one another and are bonded to the liner. A braid composed of helically wound metal filaments is disposed between the liner and the proximal and medial outer layers, and includes a distal portion between the liner and a proximal portion of the distal outer layer. The liner and distal outer layer provide a translucent distal region of the catheter that is adapted to constrain a radially self-expanding prosthesis in a radially reduced, axially elongated state. Because the stent constraining region is translucent, an endoscope can be used to visually monitor the stent when so constrained.
    Type: Application
    Filed: May 18, 2009
    Publication date: September 10, 2009
    Applicant: BOSTON SCIENTIFIC SCIMED, INC.
    Inventors: Jennifer E. Raeder-Devens, Susan I. Shelso, James F. Hemerick, Eric M. Schneider, Heather L. Getty, Doreen M. Borgmann, Kakao Sisombath, Jeffrey A. Helgerson
  • Patent number: 6726712
    Abstract: A prosthesis delivery and deployment device includes an elongated and flexible outer catheter. The outer catheter has a tubular wall of layered construction, including a translucent inner liner running the complete catheter length, and three outer layers including a translucent distal layer, an opaque medial layer and an opaque proximal outer layer. The outer layers are adjacent one another and are bonded to the liner. A braid composed of helically wound metal filaments is disposed between the liner and the proximal and medial outer layers, and includes a distal portion between the liner and a proximal portion of the distal outer layer. The liner and distal outer layer provide a translucent distal region of the catheter that is adapted to constrain a radially self-expanding prosthesis in a radially reduced, axially elongated state. Because the stent constraining region is translucent, an endoscope can be used to visually monitor the stent when so constrained.
    Type: Grant
    Filed: May 12, 2000
    Date of Patent: April 27, 2004
    Assignee: Boston Scientific Scimed
    Inventors: Jennifer E. Raeder-Devens, Susan I. Shelso, James F. Hemerick, Eric M. Schneider, Heather L. Getty, Doreen M. Borgmann, Kakao Sisombath, Jeffrey A. Helgerson
  • Publication number: 20030050686
    Abstract: A prosthesis delivery and deployment device includes an elongate and flexible outer catheter. The outer catheter has a tubular wall of layered construction, including a translucent inner liner running the complete catheter length, and three outer layers including a translucent distal layer, an opaque medial layer and an opaque proximal outer layer. The outer layers are adjacent one another and are bonded to the liner. A braid composed of helically wound metal filaments is disposed between the liner and the proximal and medial outer layers, and includes a distal portion between the liner and a proximal portion of the distal outer layer. The liner and distal outer layer provide a translucent distal region of the catheter that is adapted to constrain a radially self-expanding prosthesis in a radially reduced, axially elongated state. Because the stent constraining region is translucent, an endoscope can be used to visually monitor the stent when so constrained.
    Type: Application
    Filed: October 25, 2002
    Publication date: March 13, 2003
    Inventors: Jennifer E. Raeder-Devens, Susan I. Shelso, James F. Hemerick, Eric M. Schneider, Heather L. Getty, Doreen M. Borgmann, Kakao Sisombath, Jeffrey A. Helgerson
  • Patent number: 5781868
    Abstract: Described is a method of removing chemical agents from the interior of chemical agent filled bodies such as munitions shells. A rotating nozzle is inserted into an opening cut into the shell. High pressure fluidjets (i.e. from about 1,500 psi to above 40,000 psi) are projected from orifices in the nozzle onto the chemical agent in the shell. Chemical agent and chemical agent laden fluid is contained and carried away from the shell for recycle or disposal.
    Type: Grant
    Filed: October 10, 1996
    Date of Patent: July 14, 1998
    Assignee: Alliant Techsystems Inc.
    Inventors: Paul L. Miller, Heather L. Getty, Millard M. Garrison
  • Patent number: 5737709
    Abstract: Described is a method of removing explosive agents from the interior of explosive agent filled bodies such as munitions shells. A rotating nozzle is inserted into an opening cut into the shell. Ultra-high pressure fluidjets (i.e. above 40,000 psi) are projected from orifices in the nozzle onto the explosive agent in the shell. Explosive agent and explosive agent laden fluid is contained and carried away from the shell for recycle or disposal.
    Type: Grant
    Filed: September 17, 1996
    Date of Patent: April 7, 1998
    Inventors: Heather L. Getty, Paul L. Miller, Michael S. Cypher, Joseph H. Lamon, David P. Hatz, Millard M. Garrison, Lonny D. Hill, Dennis A. Martinson, Ray Elbert Reynolds, Jose P. Munoz
  • Patent number: 5538641
    Abstract: Described is a method to recycle laden fluid containing explosives or neutralized chemical agents. For example, the explosive laden fluid is passed through four filtering stages; a clarifier, a filter press, a sand filter and, ultimately, a reverse osmosis device. The feed water to the reverse osmosis device is a saturated solution of explosive or neutralizing chemical agent. The resulting permeate is about 10 ppm of explosive or neutralizing chemical agent.
    Type: Grant
    Filed: December 29, 1994
    Date of Patent: July 23, 1996
    Assignee: Global Environmental Solutions, Inc.
    Inventors: Heather L. Getty, Michael S. Cypher, David P. Hatz, Paul L. Miller