Patents by Inventor Hee-Soo Kang

Hee-Soo Kang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7056781
    Abstract: According to some embodiments, a fin type active region is formed under an exposure state of sidewalls on a semiconductor substrate. A gate insulation layer is formed on an upper part of the active region and on the sidewalls, and a device isolation film surrounds the active region to an upper height of the active region. The sidewalls are partially exposed by an opening part formed on the device isolation film. The opening part is filled with a conductive layer that partially covers the upper part of the active region, forming a gate electrode. Source and drain regions are on a portion of the active region where the gate electrode is not. The gate electrode may be easily separated and problems causable by etch by-product can be substantially reduced, and a leakage current of channel region and an electric field concentration onto an edge portion can be prevented.
    Type: Grant
    Filed: December 15, 2004
    Date of Patent: June 6, 2006
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jae-Man Yoon, Gyo-Young Jin, Hee-Soo Kang, Dong-Gun Park
  • Publication number: 20050255643
    Abstract: A method of forming a fin transistor using a damascene process is provided. A filling mold insulation pattern is recessed to expose an upper portion of a fin, and a mold layer is formed. The mold layer is patterned to form a groove crossing the fin and exposing a part of the upper portion of the fin. A gate electrode is formed to fill the groove with a gate insulation layer interposed between the fin and the gate electrode, and the mold layer is removed. Impurities are implanted through both sidewalls and a top surface of the upper portion of the fin disposed at opposite sides of a gate electrode to form a source/drain region.
    Type: Application
    Filed: April 21, 2005
    Publication date: November 17, 2005
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Young-Joon Ahn, Dong-Gun Park, Choong-Ho Lee, Hee-Soo Kang
  • Publication number: 20050255656
    Abstract: In one aspect, a semiconductor substrate is provided having a cell area and a peripheral circuit area, and a mask layer is formed over the cell area and the peripheral circuit area of the semiconductor substrate. A FinFET gate is fabricated by forming a first opening in the mask layer to expose a first gate region in the cell area of the semiconductor substrate, and then forming a FinFET gate electrode in the first opening using a damascene process. A MOSFET gate fabricated by forming a second opening in the mask layer to expose a second gate region in the peripheral circuit area of the semiconductor substrate, and then forming a MOSFET gate electrode in the second opening using a damascene process.
    Type: Application
    Filed: March 16, 2005
    Publication date: November 17, 2005
    Inventors: Hee-soo Kang, Dong-gun Park, Choong-ho Lee, Hye-jin Cho, Young-joon Ahn
  • Publication number: 20050239252
    Abstract: A method of forming an integrated circuit device includes forming a non-planar field-effect transistor in a cell array portion of a semiconductor substrate and forming a planar field-effect transistor in a peripheral circuit portion of the semiconductor substrate. The non-planar field-effect transistor may be selected from the group of a FinFET and a recessed gate FET. Dopants may be implanted into a channel region of the non-planar field-effect transistor, and a cell protection layer may be formed on the non-planar field-effect transistor. Then, dopants may be selectively implanted into a channel region of the planar field-effect transistor using the cell protection layer as a mask to block implanting of the dopants into the channel region of the non-planar field-effect transistor.
    Type: Application
    Filed: April 20, 2005
    Publication date: October 27, 2005
    Inventors: Young-Joon Ahn, Dong-Gun Park, Choong-Ho Lee, Hee-Soo Kang
  • Publication number: 20050215014
    Abstract: An integrated circuit device containing complementary metal oxide semiconductor transistors includes a semiconductor substrate and an NMOS transistor having a first fin-shaped active region that extends in the semiconductor substrate. The first fin-shaped active region has a first channel region therein with a first height. A PMOS transistor is also provided. The PMOS transistor has a second fin-shaped active region that extends in the semiconductor substrate. This second fin-shaped active region has a second channel region therein with a second height unequal to the first height.
    Type: Application
    Filed: March 23, 2005
    Publication date: September 29, 2005
    Inventors: Young-Joon Ahn, Dong-Gun Park, Choong-Ho Lee, Hee-Soo Kang
  • Publication number: 20050170593
    Abstract: A device isolation film and an active region are formed on a semiconductor substrate, using a first mask pattern to expose only a formation region of the device isolation film. Only the device isolation film is selectively etched by using the first mask pattern and a second mask pattern as an etch mask, to form a fin only on a gate formation region, the second mask pattern to expose only a gate electrode formation region. A gate insulation layer is formed on both sidewalls of the fin and a gate electrode covering the first mask pattern and the gate insulation layer is formed. Source and drain regions are formed on the remaining portion of the active region where the gate electrode was not formed. Gate electrode separation becomes adequate and manufacturing costs can be reduced.
    Type: Application
    Filed: January 28, 2005
    Publication date: August 4, 2005
    Inventors: Hee-Soo Kang, Chul Lee, Tae-Yong Kim, Dong-Gun Park, Young-Joon Ahn, Choong-Ho Lee, Sang-Yeon Han
  • Publication number: 20050167754
    Abstract: A fin type MOSFET and a method of manufacturing the fin type MOSFET are disclosed. Gate structures in the fin type MOSFET are formed by a damascene process without a photolithography process. Impurities used to form a channel region are selectively implanted into portions of a semiconductor substrate adjacent to the gate structures.
    Type: Application
    Filed: February 1, 2005
    Publication date: August 4, 2005
    Inventors: Hee-Soo Kang, Jae-Man Yoon, Dong-Gun Park, Sang-Yeon Han, Young-Joon Ahn, Choong-Ho Lee
  • Publication number: 20050153490
    Abstract: According to some embodiments, a fin type active region is formed under an exposure state of sidewalls on a semiconductor substrate. A gate insulation layer is formed on an upper part of the active region and on the sidewalls, and a device isolation film surrounds the active region to an upper height of the active region. The sidewalls are partially exposed by an opening part formed on the device isolation film. The opening part is filled with a conductive layer that partially covers the upper part of the active region, forming a gate electrode. Source and drain regions are on a portion of the active region where the gate electrode is not. The gate electrode may be easily separated and problems causable by etch by-product can be substantially reduced, and a leakage current of channel region and an electric field concentration onto an edge portion can be prevented.
    Type: Application
    Filed: December 15, 2004
    Publication date: July 14, 2005
    Inventors: Jae-Man Yoon, Gyo-Young Jin, Hee-Soo Kang, Dong-Gun Park