Patents by Inventor Hee-young Seo

Hee-young Seo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11963394
    Abstract: A display device includes: a substrate; a display element layer disposed on the substrate, where the display element layer includes a light emitting element which emits light; a polarizing film disposed on the display element layer, where the polarizing film includes a first polarizer having a first absorption axis extending to a first direction and a first transmission axis extending to a second direction orthogonal to the first direction; and a first layer disposed on one surface of the polarizing film, where the first layer has a first phase difference. Light emitted from the display element layer has a polarizing axis, and an angle between the polarizing axis and one of the first absorption axis and the first transmission axis is in a range of about 25 degrees to about 65 degrees.
    Type: Grant
    Filed: September 18, 2023
    Date of Patent: April 16, 2024
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Hee Young Lee, Eun Mi Seo, Gil Yeong Park, Min Ju Oh
  • Patent number: 11196042
    Abstract: The present invention relates to a method for preparing silicon-based active material particles for a secondary battery and silicon-based active material particles. The method for preparing silicon-based active material particles according to an embodiment of the present invention comprises the steps of: providing silicon powder; dispersing the silicon powder into an oxidant solvent to provide a mixture prior to grinding; fine-graining the silicon powder by applying mechanical compression and shear stress to the silicon powder in the mixture prior to grinding to produce silicon particles; producing a layer of chemical oxidation on the fine-grained silicon particles with the oxidant solvent while applying mechanical compression and shear stress to produce silicon-based active material particles; and drying the resulting product comprising the silicon-based active material particles to yield silicon-based active material particles.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: December 7, 2021
    Inventors: Young Tai Cho, Yong Gil Choi, Seung Chul Park, Seon Park, Hee Young Seo, Jee Hye Park, Yong Eui Lee, Chul Hwan Kim
  • Patent number: 11171332
    Abstract: The present invention relates to a method for producing silicon-based active material particles for a secondary battery and silicon-based active material particles. A method for producing silicon-based active material particles for a secondary battery according to an embodiment of the present invention may comprise: a step of providing silicon powder; a step of providing a pre-pulverization mixture in which the silicon powder is dispersed in a solvent for dispersion comprising an antioxidant; a step of applying mechanical compression and shear stress to the silicon powder of the pre-pulverization mixture to refine the silicon powder, thereby forming silicon particles having an oxygen content controlled by the antioxidant; and a step of drying the resulting material comprising the silicon particles to obtain silicon-based active material particles.
    Type: Grant
    Filed: August 23, 2017
    Date of Patent: November 9, 2021
    Assignee: Nexeon Ltd.
    Inventors: Seung Chul Park, Eui Joon Song, Min Young Cheong, Jong Hun Lee, Young Tai Cho, Yong Gil Choi, Seon Park, Sung Hwan Kang, Hee Young Seo, Jee Hye Park, Tae Jin Yang
  • Patent number: 10797303
    Abstract: The present invention relates to a silicon-based anode active material and a method of fabricating the same. The silicon-based anode active material according to an embodiment of the present invention comprises: particles comprising silicon and oxygen combined with the silicon, wherein a carbon-based conductive layer is coated with on outermost surface of the particles; and phosphorus doped in the particles, wherein a content of the phosphorus with respect to a total weight of the particles and the phosphorus doped in the particles have a range of 0.01 wt % to 15 wt %, and a content of the oxygen has a range of 9.5 wt % to 25 wt %.
    Type: Grant
    Filed: March 25, 2016
    Date of Patent: October 6, 2020
    Assignee: Nexeon Ltd
    Inventors: Young Tai Cho, Yong Gil Choi, Seung Chul Park, Seon Park, Hee Young Seo, Jee Hye Park, Yong Eui Lee, Chul Hwan Kim
  • Patent number: 10797312
    Abstract: The present invention relates to a silicon-based anode active material and a method for manufacturing the same. The silicon-based anode active material according to an embodiment of the present invention comprises: particles comprising silicon and oxygen combined with the silicon, and having a carbon-based conductive film coated on the outermost periphery thereof; and boron doped inside the particles, wherein with respect to the total weight of the particles and the doped boron, the boron is included in the amount of 0.01 weight % to 17 weight %, and the oxygen is included in the amount of 16 weight % to 29 weight %.
    Type: Grant
    Filed: December 30, 2015
    Date of Patent: October 6, 2020
    Assignee: Nexeon Ltd.
    Inventors: Young Tai Cho, Yong Gil Choi, Seung Chul Park, Seon Park, Hee Young Seo, Jee Hye Park, Yong Eui Lee, Chul Hwan Kim
  • Patent number: 10693134
    Abstract: Provided is an anode active material for a secondary battery and a method of fabricating the anode active material. A silicon-based active material composite according to an embodiment of the inventive concept includes silicon and silicon oxide obtained by oxidizing at least a part of the silicon, and an amount of oxygen with respect to a total weight of the silicon and the silicon oxide is restricted to 9 wt % to 20 wt %.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: June 23, 2020
    Inventors: Young Tai Cho, Seung Chul Park, Seon Park, Jee Hye Park, Yong Eui Lee, Chul Hwan Kim, Hee Young Seo
  • Patent number: 10673072
    Abstract: The present invention relates to a silicon anode active material capable of high capacity and high output, and a method for fabricating the same. A silicon anode active material according to an embodiment of the present invention includes a silicon core including silicon particles; and a double clamping layer having a silicon carbide layer on the silicon core and a silicon oxide layer between the silicon core and the silicon carbide layer.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: June 2, 2020
    Assignee: Nexeon Ltd.
    Inventors: Young Tai Cho, Yong Gil Choi, Seon Park, Young Jae Lee, Hee Young Seo, Jee Hye Park, Yong Eui Lee, Young Jin Hong
  • Patent number: 10586976
    Abstract: Provided is a negative active material and a lithium secondary battery including the negative active material. The negative active material for a secondary battery includes silicon particles, wherein circularities of the particles are determined by equation 1 below, and the circularities are 0.5 or greater and 0.9 or less, Circularity=2(pi×A)1/2/P??[Equation 1] where A denotes a projected area of the silicon particle that is two-dimensionally projected, and P denotes a circumferential length of the silicon particle that is two-dimensionally projected.
    Type: Grant
    Filed: April 22, 2015
    Date of Patent: March 10, 2020
    Assignee: Nexeon Ltd
    Inventors: Young Tai Cho, Seung Chul Park, Seon Park, Hee Young Seo, Jee Hye Park, Yong Eui Lee, Chul Hwan Kim
  • Patent number: 10522824
    Abstract: The present invention relates to a method for preparing silicon-based active material particles for a secondary battery and silicon-based active material particles. The method for preparing silicon-based active material particles according to an embodiment of the present invention comprises the steps of: providing silicon powder; dispersing the silicon powder into an oxidant solvent to provide a mixture prior to grinding; fine-graining the silicon powder by applying mechanical compression and shear stress to the silicon powder in the mixture prior to grinding to produce silicon particles; producing a layer of chemical oxidation on the fine-grained silicon particles with the oxidant solvent while applying mechanical compression and shear stress to produce silicon-based active material particles; and drying the resulting product comprising the silicon-based active material particles to yield silicon-based active material particles.
    Type: Grant
    Filed: July 21, 2015
    Date of Patent: December 31, 2019
    Assignee: Nexeon Ltd
    Inventors: Young Tai Cho, Yong Gil Choi, Seung Chul Park, Seon Park, Hee Young Seo, Jee Hye Park, Yong Eui Lee, Chul Hwan Kim
  • Publication number: 20190326594
    Abstract: Provided is an anode active material for a secondary battery and a method of fabricating the anode active material. A silicon-based active material composite according to an embodiment of the inventive concept includes silicon and silicon oxide obtained by oxidizing at least a part of the silicon, and an amount of oxygen with respect to a total weight of the silicon and the silicon oxide is restricted to 9 wt % to 20 wt %.
    Type: Application
    Filed: July 2, 2019
    Publication date: October 24, 2019
    Inventors: Young Tai Cho, Seung Chul Park, Seon Park, Jee Hye Park, Yong Eui Lee, Chul Hwan Kim, Hee Young Seo
  • Publication number: 20190296340
    Abstract: The present invention relates to a method for preparing silicon-based active material particles for a secondary battery and silicon-based active material particles. The method for preparing silicon-based active material particles according to an embodiment of the present invention comprises the steps of: providing silicon powder; dispersing the silicon powder into an oxidant solvent to provide a mixture prior to grinding; fine-graining the silicon powder by applying mechanical compression and shear stress to the silicon powder in the mixture prior to grinding to produce silicon particles; producing a layer of chemical oxidation on the fine-grained silicon particles with the oxidant solvent while applying mechanical compression and shear stress to produce silicon-based active material particles; and drying the resulting product comprising the silicon-based active material particles to yield silicon-based active material particles.
    Type: Application
    Filed: June 12, 2019
    Publication date: September 26, 2019
    Inventors: Young Tai Cho, Yong Gil Choi, Seung Chul Park, Seon Park, Hee Young Seo, Jee Hye Park, Yong Eui Lee, Chul Hwan Kim
  • Patent number: 10396355
    Abstract: Provided is an anode active material for a secondary battery and a method of fabricating the anode active material. A silicon-based active material composite according to an embodiment of the inventive concept includes silicon and silicon oxide obtained by oxidizing at least a part of the silicon, and an amount of oxygen with respect to a total weight of the silicon and the silicon oxide is restricted to 9 wt % to 20 wt %.
    Type: Grant
    Filed: April 9, 2015
    Date of Patent: August 27, 2019
    Assignee: Nexeon Ltd.
    Inventors: Young Tai Cho, Seung Chul Park, Seon Park, Hee Young Seo, Jee Hye Park, Yong Eui Lee, Chul Hwan Kim
  • Publication number: 20190190020
    Abstract: The present invention relates to a method for producing silicon-based active material particles for a secondary battery and silicon-based active material particles. A method for producing silicon-based active material particles for a secondary battery according to an embodiment of the present invention may comprise: a step of providing silicon powder; a step of providing a pre-pulverization mixture in which the silicon powder is dispersed in a solvent for dispersion comprising an antioxidant; a step of applying mechanical compression and shear stress to the silicon powder of the pre-pulverization mixture to refine the silicon powder, thereby forming silicon particles having an oxygen content controlled by the antioxidant; and a step of drying the resulting material comprising the silicon particles to obtain silicon-based active material particles.
    Type: Application
    Filed: August 23, 2017
    Publication date: June 20, 2019
    Applicant: NEXEON LTD.
    Inventors: Seung Chul Park, Eui Joon Song, Min Young Cheong, Jong Hun Lee, Young Tai Cho, Yong Gil Choi, Seon Park, Sung Hwan Kang, Hee Young Seo, Jee Hye Park, Tae Jin Yang
  • Publication number: 20180083263
    Abstract: The present invention relates to a silicon-based anode active material and a method of fabricating the same. The silicon-based anode active material according to an embodiment of the present invention comprises: particles comprising silicon and oxygen combined with the silicon, wherein a carbon-based conductive layer is coated with on outermost surface of the particles; and phosphorus doped in the particles, wherein a content of the phosphorus with respect to a total weight of the particles and the phosphorus doped in the particles have a range of 0.01 wt % to 15 wt %, and a content of the oxygen has a range of 9.5 wt % to 25 wt %.
    Type: Application
    Filed: March 25, 2016
    Publication date: March 22, 2018
    Inventors: Young Tai Cho, Yong Gil Choi, Seung Chul Park, Seon Park, Hee Young Seo, Jee Hye Park, Yong Eui Lee, Chul Hwan Kim
  • Publication number: 20180034056
    Abstract: The present invention relates to a silicon anode active material capable of high capacity and high output, and a method for fabricating the same. A silicon anode active material according to an embodiment of the present invention includes a silicon core including silicon particles; and a double clamping layer having a silicon carbide layer on the silicon core and a silicon oxide layer between the silicon core and the silicon carbide layer.
    Type: Application
    Filed: February 24, 2015
    Publication date: February 1, 2018
    Inventors: Young Tai Cho, Yong Gil Choi, Seon Park, Young Jae Lee, Hee Young Seo, Jee Hye Park, Yong Eui Lee, Young Jin Hong
  • Publication number: 20170352883
    Abstract: The present invention relates to a silicon-based anode active material and a method for manufacturing the same. The silicon-based anode active material according to an embodiment of the present invention comprises: particles comprising silicon and oxygen combined with the silicon, and having a carbon-based conductive film coated on the outermost periphery thereof; and boron doped inside the particles, wherein with respect to the total weight of the particles and the doped boron, the boron is included in the amount of 0.01 weight % to 17 weight %, and the oxygen is included in the amount of 16 weight % to 29 weight %.
    Type: Application
    Filed: December 30, 2015
    Publication date: December 7, 2017
    Inventors: Young Tai Cho, Yong Gil Choi, Seung Chul Park, Seon Park, Hee Young Seo, Jee Hye Park, Yong Eui Lee, Chul Hwan Kim
  • Publication number: 20170214042
    Abstract: The present invention relates to a method for preparing silicon-based active material particles for a secondary battery and silicon-based active material particles. The method for preparing silicon-based active material particles according to an embodiment of the present invention comprises the steps of: providing silicon powder; dispersing the silicon powder into an oxidant solvent to provide a mixture prior to grinding; fine-graining the silicon powder by applying mechanical compression and shear stress to the silicon powder in the mixture prior to grinding to produce silicon particles; producing a layer of chemical oxidation on the fine-grained silicon particles with the oxidant solvent while applying mechanical compression and shear stress to produce silicon-based active material particles; and drying the resulting product comprising the silicon-based active material particles to yield silicon-based active material particles.
    Type: Application
    Filed: July 21, 2015
    Publication date: July 27, 2017
    Inventors: Young Tai Cho, Yong Gil Choi, Seung Chul Park, Seon Park, Hee Young Seo, Jee Hye Park, Yong Eui Lee
  • Publication number: 20170047580
    Abstract: Provided is a negative active material and a lithium secondary battery including the negative active material. The negative active material for a secondary battery includes silicon particles, wherein circularities of the particles are determined by equation 1 below, and the circularities are 0.5 or greater and 0.9 or less, Circularity=2(pi×A)1/2/P??[Equation 1] where A denotes a projected area of the silicon particle that is two-dimensionally projected, and P denotes a circumferential length of the silicon particle that is two-dimensionally projected.
    Type: Application
    Filed: April 22, 2015
    Publication date: February 16, 2017
    Inventors: Young Tai Cho, Seung Chul Park, Seon Park, Hee Young Seo, Jee Hye Park, Yong Eui Lee, Chul Hwan Kim
  • Publication number: 20170033357
    Abstract: Provided is an anode active material for a secondary battery and a method of fabricating the anode active material. A silicon-based active material composite according to an embodiment of the inventive concept includes silicon and silicon oxide obtained by oxidizing at least a part of the silicon, and an amount of oxygen with respect to a total weight of the silicon and the silicon oxide is restricted to 9 wt % to 20 wt %.
    Type: Application
    Filed: April 9, 2015
    Publication date: February 2, 2017
    Inventors: Young Tai Cho, Seoung Chul Park, Seon Park, Hee Young Seo, Jee Hye Park, Yong Eui Lee, Chul Hwan Kim
  • Publication number: 20080150930
    Abstract: A driving circuit for a liquid crystal display (LCD) includes a timing controller that divides a power voltage, which is supplied from a power source unit, into a plurality of gamma reference voltages. A regulator generates a second voltage from a first voltage by using the gamma reference voltages as internal reference voltages, where the first voltage is an input voltage and the second voltage is an output voltage. A source driver uses the second voltage as an internal bias voltage. Accordingly, it is possible to apply a relatively constant power/ground voltage to a source driver regardless of the location of the source driver in the LCD. Related LCD devices and operational methods are also described.
    Type: Application
    Filed: June 13, 2007
    Publication date: June 26, 2008
    Inventors: Jang-jin Nam, Hee-young Seo