Patents by Inventor Heidi Rye Hudlebusch

Heidi Rye Hudlebusch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230060373
    Abstract: The present invention relates to antisense LNA oligonucleotides (oligomers) complementary to ATXN3 pre-mRNA sequences, which are capable of inhibiting the expression of ATXN3 protein. Inhibition of ATXN3 expression is beneficial for the treatment of spinocerebellar ataxia.
    Type: Application
    Filed: December 2, 2021
    Publication date: March 2, 2023
    Inventors: Heidi Rye Hudlebusch, Alexander Herbert Stephan, Lykke Pedersen, Christoffer Sondergaard, Erik Funder
  • Publication number: 20230054720
    Abstract: The present invention relates to antisense LNA oligonucleotides (oligomers) complementary to ATXN3 pre-mRNA sequences, which are capable of inhibiting the expression of ATXN3 protein.
    Type: Application
    Filed: December 2, 2021
    Publication date: February 23, 2023
    Inventors: Heidi Rye Hudlebusch, Lykke Pedersen, Erik Funder, Lukasz Kielpinski, Christoffer Sondergaard, Alexander Herbert Stephan, Mads Manso
  • Patent number: 11542501
    Abstract: The present invention relates to antisense LNA oligonucleotides (oligomers) complementary to ATXN3 pre-mRNA sequences, which are capable of inhibiting the expression of ATXN3 protein. Inhibition of ATXN3 expression is beneficial for the treatment of spinocerebellar ataxia.
    Type: Grant
    Filed: June 5, 2020
    Date of Patent: January 3, 2023
    Assignee: HOFFMANN-LA ROCHE INC.
    Inventors: Marianne Ravn Møller, Heidi Rye Hudlebusch, Lykke Pedersen, Erik Daa Funder, Christoffer Sondergaard, Jette Dam Hedegaard, Alexander Herbert Stephan, Peter Hagedorn
  • Publication number: 20220177883
    Abstract: The present invention relates to antisense LNA oligonucleotides (oligomers) complementary to ATXN3 pre-mRNA sequences, which are capable of inhibiting the expression of ATXN3 protein. Inhibition of ATXN3 expression is beneficial for the treatment of spinocerebellar ataxia.
    Type: Application
    Filed: December 2, 2021
    Publication date: June 9, 2022
    Inventors: Heidi Rye Hudlebusch, Lykke Pedersen, Erik Funder, Lukasz Kielpinski, Christoffer Sondergaard, Alexander Herbert Stephan
  • Patent number: 11286485
    Abstract: The present invention relates to antisense oligonucleotides that are capable of modulating expression of ATXN2 in a target cell. The oligonucleotides hybridize to ATXN2 mRNA. The present invention further relates to conjugates of the oligonucleotide and pharmaceutical compositions and methods for treatment of neurodegenerative diseases such as spinocerebellar ataxia type 2 (SCA2), amyotrophic lateral sclerosis (ALS), Alzheimer's frontotemporal dementia (FTD), parkinsonism and conditions with TDP-43 proteinopathies using the oligonucleotide.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: March 29, 2022
    Assignee: HOFFMANN-LA ROCHE INC.
    Inventors: Peter Hagedorn, Dennis Jul Hansen, Heidi Rye Hudlebusch, Lykke Pedersen, Søren Vestergaard Rasmussen, Mette Ladefoged
  • Publication number: 20220042022
    Abstract: The present invention relates to antisense oligonucleotides (oligomers) that are complementary to HTRA1, leading to modulation of the expression of HTRA1. Modulation of HTRA1 expression is beneficial for a range of medical disorders, such as macular degeneration, e.g. age-related macular degeneration.
    Type: Application
    Filed: August 17, 2021
    Publication date: February 10, 2022
    Inventors: Rubén Alvarez Sánchez, Roberto Iacone, Peter Hagedorn, Susanne Kammler, Søren Ottosen, Sindri Traustason, Heidi Rye Hudlebusch, Lykke Pedersen, Marco Berrera, Andreas Dieckmann
  • Publication number: 20210261961
    Abstract: The present invention relates to antisense oligonucleotides (oligomers) complementary to nucleic acids encoding mammalian T cell-restricted intracellular antigen-1 (TIA1), in particular antisense oligonucleotides targeting TIA1 pre-mRNA sequences, which are capable of inhibiting the expression of TIA1. Inhibition of TIA1expression is beneficial for a range of medical disorders including neurodegenerative diseases, such as amyotrophic lateral sclerosis (ALS) or Frontotemporal Dementia.
    Type: Application
    Filed: April 30, 2021
    Publication date: August 26, 2021
    Inventors: Veronica COSTA, Heidi Rye HUDLEBUSCH, Ravi JAGASIA, Dheeraj MALHOTRA, Lykke PEDERSEN
  • Patent number: 11066669
    Abstract: The present invention relates to antisense oligonucleotides that are capable of modulating expression of ATXN2 in a target cell. The oligonucleotides hybridize to ATXN2 mRNA. The present invention further relates to conjugates of the oligonucleotide and pharmaceutical compositions and methods for treatment of neurodegenerative diseases such as spinocerebellar ataxia type 2 (SCA2), amyotrophic lateral sclerosis (ALS), Alzheimer's frontotemporal dementia (FTD), parkinsonism and conditions with TDP-43 proteinopathies using the oligonucleotide.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: July 20, 2021
    Assignee: Hoffmann-La Roche Inc.
    Inventors: Peter Hagedorn, Heidi Rye Hudlebusch, Lykke Pedersen, Søren V. Rasmussen
  • Publication number: 20210024925
    Abstract: The present invention relates to antisense oligonucleotides that are capable of modulating expression of ATXN2 in a target cell. The oligonucleotides hybridize to ATXN2 mRNA. The present invention further relates to conjugates of the oligonucleotide and pharmaceutical compositions and methods for treatment of neurodegenerative diseases such as spinocerebellar ataxia type 2 (SCA2), amyotrophic lateral sclerosis (ALS), Alzheimer's frontotemporal dementia (FTD), parkinsonism and conditions with TDP-43 proteinopathies using the oligonucleotide.
    Type: Application
    Filed: April 3, 2020
    Publication date: January 28, 2021
    Inventors: Peter Hagedorn, Dennis Jul Hansen, Heidi Rye Hudlebusch, Lykke Pedersen, Søren Vestergaard Rasmussen, Mette Ladefoged
  • Publication number: 20200385727
    Abstract: The present invention relates to antisense LNA oligonucleotides (oligomers) complementary to ATXN3 pre-mRNA sequences, which are capable of inhibiting the expression of ATXN3 protein. Inhibition of ATXN3 expression is beneficial for the treatment of spinocerebellar ataxia.
    Type: Application
    Filed: June 5, 2020
    Publication date: December 10, 2020
    Inventors: Marianne Ravn Møller, Heidi Rye Hudlebusch, Lykke Pedersen, Erik Daa Funder, Christoffer Sondergaard, Jette Dam Hedegaard, Alexander Herbert Stephan
  • Publication number: 20200378970
    Abstract: The present invention relates to the use of HTRA1 mRNA antagonists in the treatment of eye disorders, such as macular degeneration, and the use of an HTRA1 levels in the aqueous and vitreous humor as a diagnostic biomarker for the suitability of treatment of a subject with an HTRA1 mRNA antagonist.
    Type: Application
    Filed: December 19, 2018
    Publication date: December 3, 2020
    Inventors: Rubén Alvarez Sánchez, Roberto Iacone, Peter Jakob, Jean-Luc Mary, Heidi Rye Hudlebusch, Thomas Peter John Dunkley, Corinne Stucki, Ulrich Friedrich Oskar Luhmann, Carolin Rakebrandt
  • Publication number: 20200157546
    Abstract: The present invention relates to antisense oligonucleotides (oligomers) that are complementary to HTRA1, leading to modulation of the expression of HTRA1. Modulation of HTRA1 expression is beneficial for a range of medical disorders, such as macular degeneration, e.g. age-related macular degeneration.
    Type: Application
    Filed: October 28, 2019
    Publication date: May 21, 2020
    Inventors: Rubén Alvarez Sánchez, Roberto Iacone, Peter Hagedorn, Susanne Kammler, Søren Ottosen, Sindri Traustason, Heidi Rye Hudlebusch, Lykke Pedersen, Marco Berrera, Andreas Dieckmann
  • Publication number: 20200024600
    Abstract: The present invention relates to antisense oligonucleotides that are capable of modulating expression of ATXN2 in a target cell. The oligonucleotides hybridize to ATXN2 mRNA. The present invention further relates to conjugates of the oligonucleotide and pharmaceutical compositions and methods for treatment of neurodegenerative diseases such as spinocerebellar ataxia type 2 (SCA2), amyotrophic lateral sclerosis (ALS), Alzheimer's frontotemporal dementia (FTD), parkinsonism and conditions with TDP-43 proteinopathies using the oligonucleotide.
    Type: Application
    Filed: June 3, 2019
    Publication date: January 23, 2020
    Inventors: Peter Hagedorn, Heidi Rye Hudlebusch, Lykke Pedersen, Søren V. Rasmussen
  • Publication number: 20190365795
    Abstract: The present invention relates to antisense oligonucleotides that are capable of modulating expression of ATXN2 in a target cell. The oligonucleotides hybridize to ATXN2 mRNA. The present invention further relates to conjugates of the oligonucleotide and pharmaceutical compositions and methods for treatment of neurodegenerative diseases such as spinocerebellar ataxia type 2 (SCA2), amyotrophic lateral sclerosis (ALS), Alzheimer's frontotemporal dementia (FTD), parkinsonism and conditions with TDP-43 proteinopathies using the oligonucleotide.
    Type: Application
    Filed: August 20, 2019
    Publication date: December 5, 2019
    Inventors: Peter Hagedorn, Heidi Rye Hudlebusch, Lykke Pedersen, Søren V. Rasmussen
  • Publication number: 20190055564
    Abstract: The present invention relates to antisense oligonucleotides (oligomers) that are complementary to HTRA1, leading to modulation of the expression of HTRA1. Modulation of HTRA1 expression is beneficial for a range of medical disorders, such as macular degeneration, e.g. age-related macular degeneration.
    Type: Application
    Filed: May 29, 2018
    Publication date: February 21, 2019
    Inventors: Rubén Alvarez Sánchez, Roberto Iacone, Peter Hagedorn, Susanne Kammler, Søren Ottosen, Sindri Traustason, Heidi Rye Hudlebusch, Lykke Pedersen, Marco Berrera, Andreas Dieckmann