Patents by Inventor Heiko Eggers

Heiko Eggers has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170074042
    Abstract: An apparatus for drilling directional wellbores is disclosed that in one non-limiting embodiment includes a drive for rotating a drill bit, a deflection device that enables a lower section of a drilling assembly to tilt about a member of the deflection device within a selected plane when the drilling assembly is substantially rotationally stationary to allow drilling of a curved section of the wellbore when the drill bit is rotated by the drive and wherein the tilt is reduced when the drilling assembly is rotated to allow drilling of a straighter section of the wellbore, and at least one seal that isolates at least a surface of the member from outside environment.
    Type: Application
    Filed: September 23, 2016
    Publication date: March 16, 2017
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Volker Peters, Andreas Peter, Christian Fulda, Heiko Eggers, Harald Grimmer
  • Publication number: 20170067333
    Abstract: An apparatus for drilling a directional wellbore is disclosed that in one non-limiting embodiment includes a drive for rotating a drill bit, a deflection device that enables a lower section of the drilling assembly to tilt about a member of the deflection device within a selected plane when the drilling assembly is substantially rotationally stationary to allow drilling of a curved section of the wellbore when the drill bit is rotated by the drive and wherein the tilt is reduced when the drilling assembly is rotated to allow drilling of a straighter section of the wellbore, and a tilt sensor that provides measurements relating to tilt of the lower section. A controller determines a parameter of interest relating to the tilt for controlling drilling of the directional wellbore.
    Type: Application
    Filed: September 23, 2016
    Publication date: March 9, 2017
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Volker Peters, Andreas Peter, Christian Fulda, Heiko Eggers, Harald Grimmer
  • Patent number: 8174404
    Abstract: A mud pulse telemetry system comprises a surface located fluid supply line having a drilling fluid flowing therein. A non-venting pulser is disposed in the drilling fluid in the supply line, and the non-venting pulser is adapted to generate pressure fluctuations in the flowing drilling fluid. A downhole receiver in hydraulic communication with the non-venting pulser is adapted to detect the pressure fluctuations in the drilling fluid. A method for transmitting pressure signals from a surface location to a downhole location in a wellbore, comprises disposing a non-venting pulser in a surface located fluid supply line having a drilling fluid flowing therein. The non-venting pulser is actuated to generate pressure fluctuations in the flowing drilling fluid according to a predetermined encoding scheme. The pressure fluctuations are detected with a downhole receiver in hydraulic communication with the non-venting pulser.
    Type: Grant
    Filed: July 31, 2007
    Date of Patent: May 8, 2012
    Assignee: Baker Hughes Incorporated
    Inventors: Detlef Hahn, Volker Peters, Cedric Rouatbi, Heiko Eggers
  • Patent number: 7808859
    Abstract: An oscillating shear valve system for generating pressure fluctuations in a flowing drilling fluid comprising a stationary stator and an oscillating rotor, both with axial flow passages. The rotor oscillates in close proximity to the stator, at least partially blocking the flow through the stator and generating oscillating pressure pulses. The rotor passes through two zero speed positions during each cycle, facilitating rapid changes in signal phase, frequency, and/or amplitude facilitating enhanced, multivalent data encoding. The rotor is driven by a motorized gear drive. In one embodiment, a torsional spring is attached to the motor and the resulting spring mass system is designed to be near resonance at the desired pulse frequency. The system enables the use of multivalent encoding schemes for increasing data rates.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: October 5, 2010
    Assignee: Baker Hughes Incorporated
    Inventors: Detlef Hahn, Volker Peters, Cedric Rouatbi, Heiko Eggers
  • Publication number: 20080068929
    Abstract: An oscillating shear valve system for generating pressure fluctuations in a flowing drilling fluid comprising a stationary stator and an oscillating rotor, both with axial flow passages. The rotor oscillates in close proximity to the stator, at least partially blocking the flow through the stator and generating oscillating pressure pulses. The rotor passes through two zero speed positions during each cycle, facilitating rapid changes in signal phase, frequency, and/or amplitude facilitating enhanced, multivalent data encoding. The rotor is driven by a motorized gear drive. In one embodiment, a torsional spring is attached to the motor and the resulting spring mass system is designed to be near resonance at the desired pulse frequency. The system enables the use of multivalent encoding schemes for increasing data rates.
    Type: Application
    Filed: October 9, 2007
    Publication date: March 20, 2008
    Applicant: Baker Hughes Incorporated
    Inventors: Detlef Hahn, Volker Peters, Cedric Rouatbi, Heiko Eggers
  • Publication number: 20080055110
    Abstract: A mud pulse telemetry system comprises a surface located fluid supply line having a drilling fluid flowing therein. A non-venting pulser is disposed in the drilling fluid in the supply line, and the non-venting pulser is adapted to generate pressure fluctuations in the flowing drilling fluid. A downhole receiver in hydraulic communication with the non-venting pulser is adapted to detect the pressure fluctuations in the drilling fluid. A method for transmitting pressure signals from a surface location to a downhole location in a wellbore, comprises disposing a non-venting pulser in a surface located fluid supply line having a drilling fluid flowing therein. The non-venting pulser is actuated to generate pressure fluctuations in the flowing drilling fluid according to a predetermined encoding scheme. The pressure fluctuations are detected with a downhole receiver in hydraulic communication with the non-venting pulser.
    Type: Application
    Filed: July 31, 2007
    Publication date: March 6, 2008
    Applicant: BAKER HUGHES INCORPORATED
    Inventors: Detlef Hahn, Volker Peters, Cedric Rouatbi, Heiko Eggers
  • Patent number: 7280432
    Abstract: An oscillating shear valve system for generating pressure fluctuations in a flowing drilling fluid comprising a stationary stator and an oscillating rotor, both with axial flow passages. The rotor oscillates in close proximity to the stator, at least partially blocking the flow through the stator and generating oscillating pressure pulses. The rotor passes through two zero speed positions during each cycle, facilitating rapid changes in signal phase, frequency, and/or amplitude facilitating enhanced, multivalent data encoding. The rotor is driven by a motorized gear drive. In one embodiment, a torsional spring is attached to the motor and the resulting spring mass system is designed to be near resonance at the desired pulse frequency. The system enables the use of multivalent encoding schemes for increasing data rates.
    Type: Grant
    Filed: November 9, 2005
    Date of Patent: October 9, 2007
    Assignee: Baker Hughes Incorporated
    Inventors: Detlef Hahn, Volker Peters, Cedric Rouatbi, Heiko Eggers
  • Patent number: 7250873
    Abstract: A mud pulse telemetry system comprises a surface located fluid supply line having a drilling fluid flowing therein. A non-venting pulser is disposed in the drilling fluid in the supply line, and the non-venting pulser is adapted to generate pressure fluctuations in the flowing drilling fluid. A downhole receiver in hydraulic communication with the non-venting pulser is adapted to detect the pressure fluctuations in the drilling fluid. A method for transmitting pressure signals from a surface location to a downhole location in a wellbore, comprises disposing a non-venting pulser in a surface located fluid supply line having a drilling fluid flowing therein. The non-venting pulser is actuated to generate pressure fluctuations in the flowing drilling fluid according to a predetermined encoding scheme. The pressure fluctuations are detected with a downhole receiver in hydraulic communication with the non-venting pulser.
    Type: Grant
    Filed: April 24, 2003
    Date of Patent: July 31, 2007
    Assignee: Baker Hughes Incorporated
    Inventors: Detlef Hahn, Volker Peters, Cedric Rouatbi, Heiko Eggers
  • Publication number: 20060118334
    Abstract: An oscillating shear valve system for generating pressure fluctuations in a flowing drilling fluid comprising a stationary stator and an oscillating rotor, both with axial flow passages. The rotor oscillates in close proximity to the stator, at least partially blocking the flow through the stator and generating oscillating pressure pulses. The rotor passes through two zero speed positions during each cycle, facilitating rapid changes in signal phase, frequency, and/or amplitude facilitating enhanced, multivalent data encoding. The rotor is driven by a motorized gear drive. In one embodiment, a torsional spring is attached to the motor and the resulting spring mass system is designed to be near resonance at the desired pulse frequency. The system enables the use of multivalent encoding schemes for increasing data rates.
    Type: Application
    Filed: November 9, 2005
    Publication date: June 8, 2006
    Applicant: Baker Hughes Incorporated
    Inventors: Detlef Hahn, Volker Peters, Cedric Rouatbi, Heiko Eggers
  • Patent number: 6975244
    Abstract: An oscillating shear valve system for generating pressure fluctuations in a flowing drilling fluid comprising a stationary stator and an oscillating rotor, both with axial flow passages. The rotor oscillates in close proximity to the stator, at least partially blocking the flow through the stator and generating oscillating pressure pulses. The rotor passes through two zero speed positions during each cycle, facilitating rapid changes in signal phase, frequency, and/or amplitude facilitating enhanced, multivalent data encoding. The rotor is driven by a motorized gear drive. In one embodiment, a torsional spring is attached to the motor and the resulting spring mass system is designed to be near resonance at the desired pulse frequency. The system enables the use of multivalent encoding schemes for increasing data rates.
    Type: Grant
    Filed: August 19, 2002
    Date of Patent: December 13, 2005
    Assignee: Baker Hughes Incorporated
    Inventors: Detlef Hahn, Volker Peters, Cedric Rouatbi, Heiko Eggers
  • Publication number: 20040012500
    Abstract: A mud pulse telemetry system comprises a surface located fluid supply line having a drilling fluid flowing therein. A non-venting pulser is disposed in the drilling fluid in the supply line, and the non-venting pulser is adapted to generate pressure fluctuations in the flowing drilling fluid. A downhole receiver in hydraulic communication with the non-venting pulser is adapted to detect the pressure fluctuations in the drilling fluid. A method for transmitting pressure signals from a surface location to a downhole location in a wellbore, comprises disposing a non-venting pulser in a surface located fluid supply line having a drilling fluid flowing therein. The non-venting pulser is actuated to generate pressure fluctuations in the flowing drilling fluid according to a predetermined encoding scheme. The pressure fluctuations are detected with a downhole receiver in hydraulic communication with the non-venting pulser.
    Type: Application
    Filed: April 24, 2003
    Publication date: January 22, 2004
    Applicant: Baker Hughes Incorporated
    Inventors: Detlef Hahn, Volker Peters, Cedric Rouatbi, Heiko Eggers
  • Publication number: 20030056985
    Abstract: An oscillating shear valve system for generating pressure fluctuations in a flowing drilling fluid comprising a stationary stator and an oscillating rotor, both with axial flow passages. The rotor oscillates in close proximity to the stator, at least partially blocking the flow through the stator and generating oscillating pressure pulses. The rotor passes through two zero speed positions during each cycle, facilitating rapid changes in signal phase, frequency, and/or amplitude facilitating enhanced, multivalent data encoding. The rotor is driven by a motorized gear drive. In one embodiment, a torsional spring is attached to the motor and the resulting spring mass system is designed to be near resonance at the desired pulse frequency. The system enables the use of multivalent encoding schemes for increasing data rates.
    Type: Application
    Filed: August 19, 2002
    Publication date: March 27, 2003
    Applicant: Baker Hughes Incorporated
    Inventors: Detlef Hahn, Volker Peters, Cedric Rouatbi, Heiko Eggers