Patents by Inventor Heinz Job

Heinz Job has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9428029
    Abstract: An air spring module including an air spring and a shock absorber for springing and damping vibrations of a motor vehicle chassis, including—at least two working chambers filled with compressed air and connectable via at least one valve, an air spring cover, a rolling bellows fixed to the air spring cover in an air-tight manner and at least partly delimits a first working chamber filled with compressed air, and a rolling piston, which is fixed to a cylindrical tube of the shock absorber and on which the rolling bellows rolls. A second and a third working chamber are arranged one above the other in the rolling piston so as to surround the cylindrical tube. The working chambers are separated from each other by an intermediate floor provided in the rolling piston and can be connected to the first working chamber via switchable valves arranged in the rolling piston.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: August 30, 2016
    Assignee: Continental Teves AG & Co. oHG
    Inventor: Heinz Job
  • Publication number: 20150210138
    Abstract: An air spring module including an air spring and a shock absorber for springing and damping vibrations of a motor vehicle chassis, including—at least two working chambers filled with compressed air and connectable via at least one valve, an air spring cover, a rolling bellows fixed to the air spring cover in an air-tight manner and at least partly delimits a first working chamber filled with compressed air, and a rolling piston, which is fixed to a cylindrical tube of the shock absorber and on which the rolling bellows rolls. A second and a third working chamber are arranged one above the other in the rolling piston so as to surround the cylindrical tube. The working chambers are separated from each other by an intermediate floor provided in the rolling piston and can be connected to the first working chamber via switchable valves arranged in the rolling piston.
    Type: Application
    Filed: July 3, 2013
    Publication date: July 30, 2015
    Applicant: Continental Teves AG & Co., .OHG
    Inventor: Heinz Job
  • Patent number: 7886882
    Abstract: Disclosed is a gas spring/damper unit (1) having at least one movably mounted displacement piston (2) and two displacement chambers (3, 4) whose volume increases or diminishes according to the direction of travel of the displacement piston (2) and which are interconnected via overflow ducts (6, 7) in which throttle valves (16, 16?, 16?, 17, 17?, 17?, 17??) are disposed. Several throttle valves (16, 16?, 16?, 17, 17?, 17?, 17??) having different valve characteristics are positioned so as to be effective in one direction of flow. One throttle valve (17) is designed for damping eigenfrequencies ranging from 1 to 1.5 Hz while another throttle valve (17?) is designed for damping eigenfrequencies ranging from 10 to 40 Hz.
    Type: Grant
    Filed: November 16, 2005
    Date of Patent: February 15, 2011
    Assignee: Continental Aktiengesellschaf
    Inventors: Christof Behmenburg, Heinz Job, Thomas Engelke, Jörg Kock, Hermann Hoinkhaus
  • Patent number: 7802776
    Abstract: Disclosed is a pneumatic spring shock absorber unit having working chambers (2, 3), which are filled with compressed air and which are partially delimited by rolling or folding bellows (7, 8, 9). These working chambers are situated one above the other and are interconnected via throttle valves that can be flowed through. Both working chambers are located inside a common pot-shaped housing (4) and are separated by a piston (6) so that one working chamber (2) is located on the front side of the piston and the other working chamber (3) is located on the rear side of the piston and at least partially surrounds the piston rod (5) so that the piston and the piston rod are sealed and guided inside the housing by rolling bellows (7, 8, 9).
    Type: Grant
    Filed: November 22, 2005
    Date of Patent: September 28, 2010
    Assignee: Continental Aktiengesellschaft, Inc.
    Inventors: Christof Behmenburg, Heinz Job, Jens-Uwe Gleu, Christian Hilger
  • Publication number: 20080093782
    Abstract: Disclosed is a pneumatic spring shock absorber unit having working chambers (2, 3), which are filled with compressed air and which are partially delimited by rolling or folding bellows (7, 8, 9). These working chambers are situated one above the other and are interconnected via throttle valves that can be flowed through. Both working chambers are located inside a common pot-shaped housing (4) and are separated by a piston (6) so that one working chamber (2) is located on the front side of the piston and the other working chamber (3) is located on the rear side of the piston and at least partially surrounds the piston rod (5) so that the piston and the piston rod are sealed and guided inside the housing by rolling bellows (7, 8).
    Type: Application
    Filed: November 22, 2005
    Publication date: April 24, 2008
    Inventors: Christof Behmenburg, Heinz Job, Jens-Uwe Gleu, Christian Hilgers
  • Publication number: 20080000739
    Abstract: Disclosed is a gas spring/damper unit (1) having at least one movably mounted displacement piston (2) and two displacement chambers (3, 4) whose volume increases or diminishes according to the direction of travel of the displacement piston (2) and which are interconnected via overflow ducts (6, 7) in which throttle valves (16, 16?, 16?, 17, 17?, 17?, 17??) are disposed. Several throttle valves (16, 16?, 16?, 17, 17?, 17?, 17??) having different valve characteristics are positioned so as to be effective in one direction of flow. One throttle valve (17) is designed for damping eigenfrequencies ranging from 1 to 1.5 Hz while another throttle valve (17?) is designed for damping eigenfrequencies ranging from 10 to 40 Hz.
    Type: Application
    Filed: November 16, 2005
    Publication date: January 3, 2008
    Inventors: Christof Behmenburg, Heinz Job, Thomas Engelke, Jorg Kock, Hermann Hoinkhaus
  • Patent number: 7213799
    Abstract: A pneumatic suspension and damping arrangement (100) is fixedly mounted on the chassis at the upper region and to the wheel mount at the lower region thereof. The arrangement includes two hermetically closed air springs (101, 102) filled with pressurized gas, whose volumes can be changed and which are connected via an air connection (134) to a pressurized gas source. The air springs are each enclosed by a movable wall formed by a flexible member (116, 124) and each roll off on a roll-off contour and are connected to each other via a throttle element (108) through which the gas can flow in two directions. The air springs are arranged one above the other and the roll-off contour of the first air spring (101) is defined in such a way by the second air spring (102) that the first air spring (101) rolls off on the second air spring (102). A connecting element of the upper cover (104) ) with the roll-off piston (128) of the second air spring (102) runs outside of the two air springs (101, 102).
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: May 8, 2007
    Assignee: Continental Aktiengesellschaft
    Inventors: Christof Behmenburg, Heinz Job, Michael Märtens, Volker Härtel, Gerald Huber, Armin Kilsch, Thomas Engelke, Burkhard Kott
  • Publication number: 20030173723
    Abstract: A pneumatic suspension and damping arrangement (100) is especially for vehicles and can be fixedly mounted on the chassis at the upper region and to the wheel mount at the lower region thereof. The pneumatic suspension and damping arrangement includes at least two hermetically closed air springs (101, 102) filled with pressurized gas, whose volumes can be changed and which are connected via an air connection (134) to a pressurized gas source. The air springs are each enclosed by a movable wall formed by a flexible member (116, 124) and each roll off on a roll-off contour and are connected to each other via a throttle element (108) through which the gas can flow in two directions. The air springs are arranged one above the other and the roll-off contour of the first air spring (101) is defined in such a way by the second air spring (102) that the first air spring (101) rolls off on the second air spring (102).
    Type: Application
    Filed: March 13, 2003
    Publication date: September 18, 2003
    Inventors: Christof Behmenburg, Heinz Job, Michael Martens, Volker Hartel, Gerald Huber, Armin Kilsch, Thomas Engelke, Burkhard Kott
  • Patent number: 6508460
    Abstract: A motor vehicle air spring has an air volume subdivided into an air spring volume and an ancillary volume. The two volumes (4, 6) are connected to each other by a line (8) having a cross section which can be switched or continuously adjusted by a valve (12). The valve (12) has two roll membranes (56, 58) which are arranged in mutual opposition. The intermediate space (60) between the roll membranes (56, 58) preferably communicates with the atmosphere. The two mutually opposingly mounted roll membranes (56, 58) can be joined to form a single double roll membrane (76). Preferably, the valve body (34) as well as the bore (62) of the valve housing (36) is configured so as to be cylindrical so that the constant effective diameter (Dw) of the roll membranes (56, 58) results which is independent of the deflection of the valve body (34).
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: January 21, 2003
    Assignee: Continental Aktiengesellschaft
    Inventor: Heinz Job
  • Patent number: 6464201
    Abstract: A valve (12) for a motor vehicle air spring (2) having an ancillary volume (6) provides a finely metered continuous opening up to the complete cross section without throttle and a stable performance for flow forces results. The valve (12) is characterized by a star nozzle (50) which includes any desired number of slots nS (52) which mutually intersect and each slot has the length DS (58) and a width sS (56) and the slots are arranged so as to be concentric. The star nozzle peripheral length LUS (64) is increased compared to a round nozzle LUR. For the valve cross section, AVS=LUS·HS applies. The throughput cross section ADS of the star nozzle (50) is so large that it corresponds at least to the cross section AL of the inlet (68) and the outlet (70). A preferably triangular-shaped valley-like recess (66) is provided between each two mutually adjacent ones of the slots (52). The sealing body (40) of the valve (12) is preferably configured as a collar.
    Type: Grant
    Filed: May 24, 2001
    Date of Patent: October 15, 2002
    Assignee: Continental Aktiengesellschaft
    Inventor: Heinz Job
  • Patent number: 6354617
    Abstract: The invention relates to a level control arrangement for vehicles having air springs (6a) to (6d) and a pneumatically controllable directional valve (26). A residual pressure holding function and an overpressure function are integrated into the directional valve (26). The directional valve (26) is controlled by the air pressure in the air springs (6a) to (6d). The air pressure can be applied via a control line (20) to a control input (24) of the directional valve (26). The air from the air springs (6a) to (6d) is released with the aid of the venting line (28). The venting line (28) is guided separately from the control line (20) through the directional valve (26). In this way, a large air flow can be conducted through the venting line (28) without the static air pressure in the control space (50) of the directional valve (26) being reduced. The venting line is blocked by a stepped piston (44) of the directional valve when no air is to be released from the air springs.
    Type: Grant
    Filed: April 24, 2000
    Date of Patent: March 12, 2002
    Assignee: Continental Aktiengesellschaft
    Inventors: Christoph Behmenburg, Uwe Folchert, Heinz Job, Helge Westerkamp
  • Publication number: 20010054703
    Abstract: A valve (12) for a motor vehicle air spring (2) having an ancillary volume (6) provides a finely metered continuous opening up to the complete cross section without throttle and a stable performance for flow forces results. The valve (12) is characterized by a star nozzle (50) which includes any desired number of slots nS (52) which mutually intersect and each slot has the length DS (58) and a width sS (56) and the slots are arranged so as to be concentric. The star nozzle peripheral length LUS (64) is increased compared to a round nozzle LUR. For the valve cross section, AVS=LUS·HS applies. The throughput cross section ADS of the star nozzle (50) is so large that it corresponds at least to the cross section AL of the inlet (68) and the outlet (70). A preferably triangular-shaped valley-like recess (66) is provided between each two mutually adjacent ones of the slots (52). The sealing body (40) of the valve (12) is preferably configured as a collar.
    Type: Application
    Filed: May 24, 2001
    Publication date: December 27, 2001
    Inventor: Heinz Job
  • Publication number: 20010045693
    Abstract: A motor vehicle air spring has an air volume subdivided into an air spring volume and an ancillary volume. The two volumes (4, 6) are connected to each other by a line (8) having a cross section which can be switched or continuously adjusted by a valve (12). The valve (12) has two roll membranes (56, 58) which are arranged in mutual opposition. The intermediate space (60) between the roll membranes (56, 58) preferably communicates with the atmosphere. The two mutually opposingly mounted roll membranes (56, 58) can be joined to form a single double roll membrane (76). Preferably, the valve body (34) as well as the bore (62) of the valve housing (36) is configured so as to be cylindrical so that the constant effective diameter (Dw) of the roll membranes (56, 58) results which is independent of the deflection of the valve body (34).
    Type: Application
    Filed: May 24, 2001
    Publication date: November 29, 2001
    Inventor: Heinz Job
  • Patent number: 6116586
    Abstract: The invention relates to a level control arrangement for a vehicle having air springs (8) via which the chassis of the vehicle is suspended relative to at least one vehicle axle. A pneumatically-controllable directional-control valve (18) is arranged between the compressor (4) and the air dryer (6) and the directional-control valve (18) has two control inputs (20 and 22). In the base state of the level control arrangement, the compressor (4) is connected via the pneumatically-controllable directional-control valve (18) to the air dryer (6). When the control line (26) of the first control input (20) is connected via a controllable directional-control valve (30) to the atmosphere, the pneumatically-controllable directional-control valve 18 transfers into the other switching state and the air spring (8) can be vented via the air dryer (6).
    Type: Grant
    Filed: October 9, 1998
    Date of Patent: September 12, 2000
    Assignee: Continental Aktiengesellschaft
    Inventors: Helge Westerkamp, Uwe Folchert, Heinz Job