Patents by Inventor Helge Riemann

Helge Riemann has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9422636
    Abstract: A method for producing a single crystal of semiconductor material having material properties of a zone-pulled single crystal includes providing a vessel transmissive to high frequency magnetic fields and having a granulate of a granular semiconductor material disposed therein and a first conductor disposed externally thereto. A high frequency current is supplied to a planar inductor disposed above the vessel, the planar inductor having a turn and a slit as a current supply so as to produce an open melt lake on the granulate by a temperature field at a surface of the granulate produced by thermal power of the planar inductor and a heating action of the first inductor, the melt lake being embedded in unmelted material of the granular semiconductor material and not being in contact with a wall of the vessel. A single crystal is pulled form the melt lake of the semiconductor material upwards.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: August 23, 2016
    Assignee: FORSCHUNGSVERBUND BERLIN E.V.
    Inventors: Helge Riemann, Nikolai V. Abrosimov, Joerg Fischer, Matthias Renner
  • Patent number: 9084296
    Abstract: An induction heating coil melts granules composed of semiconductor material on a plate with an outlet tube. The induction heating coil has a coil body provided with current-guiding slots, the coil body having an upper side and a lower side and having a passage opening for granules in a region of the coil body that lies outside the center of the coil, and current-carrying segments which project from the center of the lower side of the coil body and which are electrically conductively connected by a web at a lower end.
    Type: Grant
    Filed: February 26, 2009
    Date of Patent: July 14, 2015
    Assignee: Siltronic AG
    Inventors: Ludwig Altmannshofer, Joerg Fischer, Helge Riemann, Wilfried von Ammon
  • Patent number: 8580033
    Abstract: A single crystal of semiconductor material is produced by a method of melting semiconductor material granules by means of a first induction heating coil on a dish with a run-off tube consisting of the semiconductor material, forming a melt of molten granules which extends from the run-off tube in the form of a melt neck and a melt waist to a phase boundary, delivering heat to the melt by means of a second induction heating coil which has an opening through which the melt neck passes, crystallizing the melt at the phase boundary, and delivering a cooling gas to the run-off tube and to the melt neck in order to control the axial position of an interface between the run-off tube and the melt neck.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: November 12, 2013
    Assignee: Siltronic AG
    Inventors: Wilfried von Ammon, Ludwig Altmannshofer, Helge Riemann, Joerg Fischer
  • Patent number: 8475592
    Abstract: A single crystal of semiconductor material is produced by a method of melting semiconductor material granules by means of a first induction heating coil on a dish with a run-off tube consisting of the semiconductor material, forming a melt of molten granules which extends from the run-off tube in the form of a melt neck and a melt waist to a phase boundary, delivering heat to the melt by means of a second induction heating coil which has an opening through which the melt neck passes, crystallizing the melt at the phase boundary, and delivering a cooling gas to the run-off tube and to the melt neck in order to control the axial position of an interface between the run-off tube and the melt neck.
    Type: Grant
    Filed: August 11, 2009
    Date of Patent: July 2, 2013
    Assignee: Siltronic AG
    Inventors: Wilfried von Ammon, Ludwig Altmannshofer, Helge Riemann, Joerg Fischer
  • Patent number: 8337615
    Abstract: A method of making a single-crystalline Si wafer with an approximately polygonal cross section and having a material property that is the same as a zone-pulled Si crystal, and the single-crystalline Si wafer. The method includes pulling at least one bottle neck of a crystal vertically downwards from a rotating hanging melt drop. The rotational speed of the crystal is reduced to between 0 and less than 1 rpm. In a crystal-growth phase, a Si single crystal ingot is pulled vertically downwards with an approximately polygonal cross section. An inductor is used to generate a temperature profile at a growth phase boundary of the crystal that corresponds to the shape of a cross section of the pulled Si single crystal ingot. The growth is ended at a desired pulling length and the Si single crystal ingot is cut into wafers having an approximately polygonal cross section.
    Type: Grant
    Filed: April 4, 2006
    Date of Patent: December 25, 2012
    Assignee: PV Silicon Forschungs und Produktions GmbH
    Inventors: Nikolai Abrosimov, Anke Luedge, Andris Muiznieks, Helge Riemann
  • Publication number: 20120285369
    Abstract: A method for producing a single crystal of semiconductor material having material properties of a zone-pulled single crystal includes providing a vessel transmissive to high frequency magnetic fields and having a granulate of a granular semiconductor material disposed therein and a first conductor disposed externally thereto. A high frequency current is supplied to a planar inductor disposed above the vessel, the planar inductor having a turn and a slit as a current supply so as to produce an open melt lake on the granulate by a temperature field at a surface of the granulate produced by thermal power of the planar inductor and a heating action of the first inductor, the melt lake being embedded in unmelted material of the granular semiconductor material and not being in contact with a wall of the vessel. A single crystal is pulled form the melt lake of the semiconductor material upwards.
    Type: Application
    Filed: November 23, 2010
    Publication date: November 15, 2012
    Applicant: FORSCHUNGSVERBUND BERLIN E.V.
    Inventors: Helge Riemann, Nikolai V. Abrosimov, Joerg Fischer, Matthias Renner
  • Patent number: 8197595
    Abstract: A method for producing thin silicon rods using a floating zone crystallization process includes supplying high frequency (HF) current to a flat induction coil having a central opening, a plurality of draw openings and a plate with a slot as a current supply of the HF current so as to provide a circumfluent current to the central opening. An upper end of a raw silicon rod is heated by induction using the flat induction coil so as to form a melt pool. A thin silicon rod is drawn upwards through each of the plurality of draw openings in the flat induction coil from the melt pool without drawing a thin silicon rod through the central opening having the circumfluent current.
    Type: Grant
    Filed: January 19, 2010
    Date of Patent: June 12, 2012
    Assignee: PV Silicon Forschungs und Produktions GmbH
    Inventors: Helge Riemann, Friedrich-Wilhelm Schulze, Joerg Fischer, Matthias Renner
  • Publication number: 20110314869
    Abstract: A method for producing thin silicon rods using a floating zone crystallization process includes supplying high frequency (HF) current to a flat induction coil having a central opening, a plurality of draw openings and a plate with a slot as a current supply of the HF current so as to provide a circumfluent current to the central opening. An upper end of a raw silicon rod is heated by induction using the flat induction coil so as to form a melt pool. A thin silicon rod is drawn upwards through each of the plurality of draw openings in the flat induction coil from the melt pool without drawing a thin silicon rod through the central opening having the circumfluent current.
    Type: Application
    Filed: January 19, 2010
    Publication date: December 29, 2011
    Applicant: PV Silicon Forschungs und Produktions GmbH
    Inventors: Helge Riemann, Friedrich-Wilhelm Schulze, Joerg Fischer, Matthias Renner
  • Publication number: 20100037815
    Abstract: A single crystal of semiconductor material is produced by a method of melting semiconductor material granules by means of a first induction heating coil on a dish with a run-off tube consisting of the semiconductor material, forming a melt of molten granules which extends from the run-off tube in the form of a melt neck and a melt waist to a phase boundary, delivering heat to the melt by means of a second induction heating coil which has an opening through which the melt neck passes, crystallizing the melt at the phase boundary, and delivering a cooling gas to the run-off tube and to the melt neck in order to control the axial position of an interface between the run-off tube and the melt neck.
    Type: Application
    Filed: August 11, 2009
    Publication date: February 18, 2010
    Applicant: Siltronic AG
    Inventors: Wilfried von Ammon, Ludwig Altmannshofer, Helge Riemann, Joerg Fischer
  • Publication number: 20090223949
    Abstract: An induction heating coil melts granules composed of semiconductor material on a plate with an outlet tube. The induction heating coil has a coil body provided with current-guiding slots, the coil body having an upper side and a lower side and having a passage opening for granules in a region of the coil body that lies outside the center of the coil, and current-carrying segments which project from the center of the lower side of the coil body and which are electrically conductively connected by a web at a lower end.
    Type: Application
    Filed: February 26, 2009
    Publication date: September 10, 2009
    Applicant: SILTRONIC AG
    Inventors: Ludwig Altmannshofer, Joerg Fischer, Helge Riemann, Wilfried von Ammon
  • Publication number: 20090068407
    Abstract: A method of making a single-crystalline Si wafer with an approximately polygonal cross section and having a material property that is the same as a zone-pulled Si crystal, and the single-crystalline Si wafer. The method includes pulling at least one bottle neck of a crystal vertically downwards from a rotating hanging melt drop. The rotational speed of the crystal is reduced to between 0 and less than 1 rpm. In a crystal-growth phase, a Si single crystal ingot is pulled vertically downwards with an approximately polygonal cross section. An inductor is used to generate a temperature profile at a growth phase boundary of the crystal that corresponds to the shape of a cross section of the pulled Si single crystal ingot. The growth is ended at a desired pulling length and the Si single crystal ingot is cut into wafers having an approximately polygonal cross section.
    Type: Application
    Filed: April 4, 2006
    Publication date: March 12, 2009
    Applicant: PV Silicon Forschungs-und Produktions AG
    Inventors: Nikolai Abrosimov, Anke Luedge, Andris Muiznieks, Helge Riemann
  • Patent number: 7326297
    Abstract: The invention relates to a device for the production of crystal rods having a defined cross-section and a column-shaped polycrystalline structure by means of floating-zone continuous crystallization, comprising at least one crucible filled with crystalline material, provided with a central deviation for transporting the contents of the crucible to a growing crystal rod arranged below the crucible, whereby the central deviation plunges into the melt meniscus, also comprising means for continuously adjustable provision of crystalline material to the crucible, and means for simultaneously feeding the melt energy and adjusting the crystallization front.
    Type: Grant
    Filed: May 6, 2003
    Date of Patent: February 5, 2008
    Assignee: PV Silicon Forschungs- und Produktions AG.
    Inventors: Nikolai V. Abrosimov, Helge Riemann
  • Publication number: 20050188918
    Abstract: The invention relates to a device for the production of crystal rods having a defined cross-section and a column-shaped polycrystalline structure by means of floating-zone continuous crystallization, comprising at least one crucible filled with crystalline material, provided with a central deviation for transporting the contents of the crucible to a growing crystal rod arranged below the crucible, whereby the central deviation plunges into the melt meniscus, also comprising means for continuously adjustable provision of crystalline material to the crucible, and means for simultaneously feeding the melt energy and adjusting the crystallization front.
    Type: Application
    Filed: May 6, 2003
    Publication date: September 1, 2005
    Inventors: Nikolai Abrosimov, Helge Riemann