Patents by Inventor Hendrik De Winne

Hendrik De Winne has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240132350
    Abstract: The invention relates to a process for preparation of chlorine from hydrogen chloride comprising circulating a liquid melt comprising copper ions Cun+ with n being a number in the range from 1 to 2, alkali cations and chloride ions Cl in a reactor system comprising three bubble lift reactors I, II and III, each comprising a reaction zone i, ii and iii respectively, wherein: ?(a) in the reaction zone i of the first bubble lift reactor I, a liquid melt comprising copper ions Cun+, alkali cations and chloride ions Cl— is contacted with oxygen at a temperature in the range from 395 to 405° C. so that the molar ratio Cun+:Cu+ in the liquid melt increases, obtaining a liquid melt having an increased molar ratio Cun+:Cu+ ?(b) the liquid melt obtained in (a) is circulated to the reaction zone ii in the second bubble lift reactor II, where the liquid melt is contacted with hydrogen chloride at a temperature in the range from 395 to 405° C.
    Type: Application
    Filed: October 15, 2020
    Publication date: April 25, 2024
    Inventors: Klemens MASSONNE, Hendrik DE WINNE, Torsten MATTKE, Ahmad DEHESTANI, Sabine WEIGUNY, Stephan ZUEND, Eric Wesley MCFARLAND, Behzad TANGEYSH, Shizhao SU, Sabine FRISCHHUT
  • Publication number: 20230294988
    Abstract: The present invention relates to a catalyst for the oxidation of hydrogen chloride to chlorine, wherein the catalyst comprises an inorganic carrier matrix and a zeolite, wherein the inorganic carrier matrix comprises Y, O, and optionally comprises X, wherein the zeolite comprises Y and O in its framework structure, and optionally comprises X in its framework structure, wherein Y is a tetravalent element and X is a trivalent element, wherein the inorganic carrier matrix and the zeolite are loaded with copper and with one or more rare earth metals, and wherein the zeolite is supported within the inorganic carrier matrix. Furthermore, the present invention relates to a molding comprising the catalyst, as well as to a process for the production of the catalyst and the molding, respectively, as well as to their respective use in a process for the oxidation of hydrogen chloride to chlorine.
    Type: Application
    Filed: May 28, 2021
    Publication date: September 21, 2023
    Inventors: Alvaro GORDILLO BOLONIO, Claudia LERMER, Andrei-Nicolae PARVULESCU, Bilge YILMAZ, David SCHLERETH, Hendrik DE WINNE, Elena PARVULESCU, Joseph John ZAKZESKI, Ulrich MUELLER
  • Publication number: 20220243133
    Abstract: In order to predict the future evolution of a health-state of an equipment and/or a processing unit of a chemical production plant, e.g., a steam cracker, a computer-implemented method is provided, which builds a data-driven model for the future key performance indicator based on the key performance indicator of today, the processing condition of today, and the processing condition over a prediction horizon.
    Type: Application
    Filed: July 27, 2020
    Publication date: August 4, 2022
    Inventors: Simeon SAUER, Daniel KECK, Eric JENNE, Alexander BADINSKI, Miriam Angela Anna HAHKALA, Bart BLANKERS, Hendrik DE WINNE, Britta Carolin BUCK
  • Publication number: 20220161237
    Abstract: The invention relates to a catalyst system suitable for hydrogenating aromatic nitro compounds (I) to form the corresponding aromatic amines (II), the catalyst system containing, as essential constituents: a component A selected from the group consisting of silicon carbide, corundum (alpha-Al2O3) and slightly porous to non-porous zirconium oxide (ZrO2); and a component B, containing B1—a carrier substance selected from the group consisting of silicon dioxide, gamma-, delta- or theta-aluminum oxide Al2O3, titanium dioxide, zirconium dioxide and graphite, B2—a metal or a plurality of metals selected from the group consisting of copper, nickel, palladium, platinum and cobalt, and optionally B3—an additional metal selected from the group consisting of at least one metal selected from main group I, main group II, main group IV and sub-groups II, V, VI and VIII of the periodic table of the elements, the proportion of component A being in the range of 5 to 60 wt %, in relation to the total weight of the catalyst sys
    Type: Application
    Filed: April 1, 2020
    Publication date: May 26, 2022
    Inventors: Veronika WLOKA, Dominik GARELLA, Michael REISER, Thomas HEIDEMANN, Hendrik DE WINNE
  • Patent number: 9884805
    Abstract: A process for preparing N-ethyldiisopropylamine by reacting acetaldehyde with diisopropylamine and hydrogen at elevated temperature and under pressure in the presence of a heterogeneous hydrogenation catalyst, the catalyst being a supported transition metal catalyst comprising Pd and/or Pt as catalytically active metal, wherein the diisopropylamine used has a purity of 58% to 94% by weight and impurities as follows: 3% to 20% by weight of water, 3% to 20% by weight of isopropanol, 0% to 2% by weight of others.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: February 6, 2018
    Assignee: BASF Antwerpen NV
    Inventor: Hendrik De Winne
  • Publication number: 20170008831
    Abstract: A process for preparing N-ethyldiisopropylamine by reacting acetaldehyde with diisopropylamine and hydrogen at elevated temperature and under pressure in the presence of a heterogeneous hydrogenation catalyst, the catalyst being a supported transition metal catalyst comprising Pd and/or Pt as catalytically active metal, wherein the diisopropylamine used has a purity of 58% to 94% by weight and impurities as follows: 3% to 20% by weight of water, 3% to 20% by weight of isopropanol, 0% to 2% by weight of others.
    Type: Application
    Filed: February 6, 2015
    Publication date: January 12, 2017
    Inventor: Hendrik DE WINNE
  • Patent number: 9115049
    Abstract: A process for obtaining pure aniline contains catalytically hydrogenating nitrobenzene, to obtain a reaction mixture, separating the reaction mixture into a gas phase containing hydrogen and a liquid phase, liquid/liquid phase separating the liquid phase to obtain an aqueous phase and also crude aniline containing water as an organic phase, distillatively pre-purifying the crude aniline by removing the water via an overhead stream of a first distillation column to obtain a first bottom stream, feeding the first bottom stream as a feed stream to a pure column from which a pure aniline stream is taken off at the top and a second bottom stream containing high boilers is taken off, and passing the second bottom stream to incineration, by pumping the second bottom stream through heated pipelines and by adding methanol, ethanol, propanol, and/or acetone to the second bottom stream.
    Type: Grant
    Filed: October 4, 2013
    Date of Patent: August 25, 2015
    Assignee: BASF SE
    Inventors: Koenraad Vandewalle, Karen Vercruysse, Leo Denissen, Filip Deberdt, Hendrik De Winne, Bart Van De Voorde, Michael Reiser, Samuel Neto
  • Publication number: 20140107378
    Abstract: A process for obtaining pure aniline contains catalytically hydrogenating nitrobenzene, to obtain a reaction mixture, separating the reaction mixture into a gas phase containing hydrogen and a liquid phase, liquid/liquid phase separating the liquid phase to obtain an aqueous phase and also crude aniline containing water as an organic phase, distillatively pre-purifying the crude aniline by removing the water via an overhead stream of a first distillation column to obtain a first bottom stream, feeding the first bottom stream as a feed stream to a pure column from which a pure aniline stream is taken off at the top and a second bottom stream containing high boilers is taken off, and passing the second bottom stream to incineration, by pumping the second bottom stream through heated pipelines and by adding methanol, ethanol, propanol, and/or acetone to the second bottom stream.
    Type: Application
    Filed: October 4, 2013
    Publication date: April 17, 2014
    Applicant: BASF SE
    Inventors: Koenraad VANDEWALLE, Karen VERCRUYSSE, Leo DENISSEN, Filip DEBERDT, Hendrik DE WINNE, Bart VAN DE VOORDE, Michael REISER, Samuel NETO
  • Patent number: 8217206
    Abstract: The present invention is a process for converting methane to methanol, comprising: feeding methane and gaseous air or oxygen or gaseous air enriched with oxygen to a reactor under an elevated pressure; said reactor having an internal surface, made of silica or coated with silica, surrounding a zone in which said gases react; and reacting said gases in said reaction zone at an elevated temperature at conditions effective to produce methanol and for valuable oxygenates. Advantageously the internal surface is made of quartz or coated with quartz Advantageously the internal surface, made of silica (advantageously quartz) or coated with silica (advantageously quartz), is treated with HF before the conversion of methane to methanol. Advantageously the reaction is carried out in the absence in said reaction zone of any added material which measurably affects the rate of the reaction or the yield of the product. Advantageously the reactor is operated under a pressure from 1 to 7.5 MPa.
    Type: Grant
    Filed: July 4, 2008
    Date of Patent: July 10, 2012
    Assignee: Total Petrochemicals Research Feluy
    Inventors: Hendrik De Winne, Pierre Jacobs, Bert Sels, Walter Vermeiren
  • Publication number: 20100280289
    Abstract: The present invention is a process for converting methane to methanol, comprising: feeding methane and gaseous air or oxygen or gaseous air enriched with oxygen to a reactor under an elevated pressure; said reactor having an internal surface, made of silica or coated with silica, surrounding a zone in which said gases react; and reacting said gases in said reaction zone at an elevated temperature at conditions effective to produce methanol and for valuable oxygenates. Advantageously the internal surface is made of quartz or coated with quartz Advantageously the internal surface, made of silica (advantageously quartz) or coated with silica (advantageously quartz), is treated with HF before the conversion of methane to methanol. Advantageously the reaction is carried out in the absence in said reaction zone of any added material which measurably affects the rate of the reaction or the yield of the product. Advantageously the reactor is operated under a pressure from 1 to 7.5 MPa.
    Type: Application
    Filed: July 4, 2008
    Publication date: November 4, 2010
    Applicant: TOTAL PETROCHEMICALS RESEARCH FELUY
    Inventors: Hendrik De Winne, Pierre Jacobs, Bert Sels, Walter Vermeiren