Patents by Inventor Hendrik Roelofs

Hendrik Roelofs has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11986339
    Abstract: System (10) for determining a position of an interventional device (11) respective an image plane (12) defined by an ultrasound imaging probe (13). The position is determined based on ultrasound signals transmitted between the ultrasound imaging probe (13) and an ultrasound transducer (15) attached to the interventional device (11). An image reconstruction unit (IRU) provides a reconstructed ultrasound image (RUI). A position determination unit (PDU) computes a lateral position (LAPTOFSmax, ?IPA) of the ultrasound transducer (15) respective the image plane (12) based on a time of flight (TOFSmax) of a maximum detected intensity (ISmax) ultrasound signal. The position determination unit (PDU) also computes an out-of-plane distance (Dop) between the ultrasound transducer (15) and the image plane (12).
    Type: Grant
    Filed: August 2, 2019
    Date of Patent: May 21, 2024
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Mischa Megens, Hendrik Roelof Stapert, Mustafa Hakan Gokgurler, Stefan Van De Pas, Jeroen Kortsmit, Franciscus Hendrikus Van Heesch, Harm Jan Willem Belt, Ameet Kumar Jain, Kunal Vaidya
  • Patent number: 11872075
    Abstract: System (10) for determining a position of an interventional device (11) respective an image plane (12) defined by an ultrasound imaging probe (13). The position is determined based on ultrasound signals transmitted between the ultrasound imaging probe (13) and an ultrasound transducer (15) attached to the interventional device (11). An image reconstruction unit (IRU) provides a reconstructed ultrasound image (RUI). A position determination unit (PDU) computes a position (LAPTOFSmax, ?IPA) of the ultrasound transducer (15) respective the image plane (12). The position determination unit (PDU) indicates the computed position (LAPTOFSmax, ?IPA) in the reconstructed ultrasound image (RUI). The position determination unit (PDU) suppresses the indication of the computed position (LAPTOFSmax, ?IPA) under specified conditions relating to the computed position (LAPTOFSmax, ?IPA) and the ultrasound signals.
    Type: Grant
    Filed: August 7, 2019
    Date of Patent: January 16, 2024
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Mischa Megens, Hendrik Roelof Stapert, Mustafa Hakan Gokgurler, Stefan Van De Pas, Jeroen Kortsmit, Franciscus Hendrikus Van Heesch, Harm Jan Willem Belt, Ameet Kumar Jain, Kunal Vaidya, Francois Guy Gerard Marie Vignon
  • Patent number: 11633171
    Abstract: The present invention relates to an ultrasound-based system for localizing a medical device within the field of view of an ultrasound imaging probe. A localization system is provided that includes at least three ultrasound emitters that are arranged on a frame; and a position triangulation unit. The frame is adapted for attachment to an ultrasound imaging probe. The position triangulation unit determines a spatial position of the ultrasound detector relative to the at least three ultrasound emitters based on signals received from an ultrasound detector that is attached to the medical device. The frame includes a detachable reference volume comprising a background volume and an inclusion or void.
    Type: Grant
    Filed: July 8, 2022
    Date of Patent: April 25, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Stefan Van De Pas, Hendrik Roelof Stapert
  • Patent number: 11604249
    Abstract: The present invention relates to an apparatus for tracking a position of an interventional device respective an image plane of an ultrasound field. The position includes an out-of-plane distance (Dop). A geometry-providing unit (GPU) includes a plurality of transducer-to-distal-end lengths (Ltde1 . . . n), each length corresponding to a predetermined distance (Ltde) between a distal end of an interventional device and an ultrasound detector attached to the interventional device, for each of a plurality of interventional device types (T1 . . . n). An image fusion unit (IFU) receives data indicative of the type (T) of the interventional device being tracked; and based on the type (T): selects from the geometry-providing unit (GPU), a corresponding transducer-to-distal-end length (Ltde); and indicates in a reconstructed ultrasound image (RUI) both the out-of-plane distance (Dop) and the transducer-to-distal-end length (Ltde) for the interventional device within the ultrasound field.
    Type: Grant
    Filed: February 17, 2022
    Date of Patent: March 14, 2023
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Hendrik Roelof Stapert, Carina Snuder, Ameet Kumar Jain, Willem-Jan Arend De Wijs
  • Publication number: 20230031014
    Abstract: A controller (240/340) for simultaneously tracking multiple interventional medical devices includes a memory (242/342) that stores instructions and a processor (241/341) that executes the instructions. When executed by the processor (241/341), the instructions cause the controller to execute a process that includes receiving timing information from a first signal emitted from an ultrasound probe (252/352) and reflective of timing when the ultrasound probe (252/352) transmits ultrasound beams to generate ultrasound imagery. The process executed by the controller also includes forwarding the timing information to be available for use by a first acquisition electronic component (232/332). The first acquisition electronic component (232/332) also receives sensor information from a first passive ultrasound sensor (S1) on a first interventional medical device (212/312).
    Type: Application
    Filed: October 13, 2022
    Publication date: February 2, 2023
    Inventors: RAMON QUIDO ERKAMP, HENDRIK ROELOF STAPERT, GUNTHER LAMPARTER, AMEET KUMAR JAIN, ALVIN CHEN, SHYAM BHARAT, KUNAL VAIDYA, FRANCOIS GUY GERARD MARIE VIGNON
  • Publication number: 20220361961
    Abstract: The invention provides an ultrasound system comprising an ultrasound probe, adapted to transmit and receive ultrasound signals, and an interventional device for insertion into a vessel of a subject. The interventional device includes an ultrasound transducer adapted to acquire a first set of ultrasound data at a first ultrasound frequency, wherein the first set of ultrasound data relates to flow data. The ultrasound system is further adapted exchange a second set of ultrasound data between the ultrasound probe and the interventional device at a second ultrasound frequency different from the first ultrasound frequency, wherein the second ultrasound data relates to interventional device positioning data.
    Type: Application
    Filed: October 27, 2020
    Publication date: November 17, 2022
    Inventors: Arjen VAN DER HORST, Hendrik Roelof STAPERT
  • Patent number: 11497563
    Abstract: A controller (240/340) for simultaneously tracking multiple interventional medical devices includes a memory (242/342) that stores instructions and a processor (241/341) that executes the instructions. When executed by the processor (241/341), the instructions cause the controller to execute a process that includes receiving timing information from a first signal emitted from an ultrasound probe (252/352) and reflective of timing when the ultrasound probe (252/352) transmits ultrasound beams to generate ultrasound imagery. The process executed by the controller also includes forwarding the timing information to be available for use by a first acquisition electronic component (232/332). The first acquisition electronic component (232/332) also receives sensor information from a first passive ultrasound sensor (S1) on a first interventional medical device (212/312).
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: November 15, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Ramon Quido Erkamp, Hendrik Roelof Stapert, Gunther Lamparter, Ameet Kumar Jain, Alvin Chen, Shyam Bharat, Kunal Vaidya, Francois Guy Gerard Marie Vignon
  • Publication number: 20220346752
    Abstract: The present invention relates to an ultrasound-based system for localizing a medical device within the field of view of an ultrasound imaging probe. A localization system is provided that includes at least three ultrasound emitters that are arranged on a frame; and a position triangulation unit. The frame is adapted for attachment to an ultrasound imaging probe. The position triangulation unit determines a spatial position of the ultrasound detector relative to the at least three ultrasound emitters based on signals received from an ultrasound detector that is attached to the medical device. The frame includes a detachable reference volume comprising a background volume and an inclusion or void.
    Type: Application
    Filed: July 8, 2022
    Publication date: November 3, 2022
    Inventors: Stefan VAN DE PAS, Hendrik Roelof STAPERT
  • Publication number: 20220330914
    Abstract: A steerable multi-plane ultrasound imaging system (MPUIS) for steering a plurality of intersecting image planes (PL1 . . . n) of a beamforming ultrasound imaging probe (BUIP) based on ultrasound signals transmitted between the beamforming ultrasound imaging probe (BUIP) and an ultrasound transducer (S) disposed within a field of view (FOV) of the probe (BUIP). An ultrasound tracking system (UTS) causes the beamforming ultrasound imaging probe (BUIP) to adjust an orientation of the first image plane (PL1) such that a first image plane passes through a position (POS) of the ultrasound transducer (S) by maximizing a magnitude of ultrasound signals transmitted between the beamforming ultrasound imaging probe (BUIP) and the ultrasound transducer (S). An orientation of a second image plane (PL2) is adjusted such that an intersection (AZ) between the first image plane and the second image plane passes through the position of the ultrasound transducer (S).
    Type: Application
    Filed: August 11, 2020
    Publication date: October 20, 2022
    Inventors: Alvin CHEN, Kunal VAIDYA, Alyssa TORJESEN, Sibo LI, Ramon Quido ERKAMP, Shyam BHARAT, Molly Lara FLEXMAN, Ameet Kumar JAIN, Hendrik Roelof STAPERT, Vincentius Paulus BUIL, Njin-Zu CHEN, Ralph Theodorus Hubertus MAESSEN, Niels NIJHOF, Elise Claude Valentine TALGORN
  • Patent number: 11464584
    Abstract: An interventional device includes an elongate shaft and a transducer strip. The transducer strip includes a first edge and an opposing second edge. The first edge and the second edge are separated by a width dimension, and the first edge and the second edge each extend along a length direction of the transducer strip. The transducer strip also includes a piezoelectric transducer that extends along a transducer direction that forms an acute angle with respect to the length direction. The transducer strip is wrapped in the form of a spiral around the elongate shaft of the interventional device such that the piezoelectric transducer forms a band around the elongate shaft. The width dimension is defined such that the adjacent first and second edges of consecutive turns of the spiral abut or overlap one another.
    Type: Grant
    Filed: February 3, 2019
    Date of Patent: October 11, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Willem-Jan Arend De Wijs, Cornelis Gerardus Visser, Hendrik Roelof Stapert, Johannes Wilhelmus Weekamp, Gerardus Franciscus Cornelis Maria Lijten, Eric Franciscus Johannes Claessens
  • Publication number: 20220304650
    Abstract: The present invention relates to a system for indicating a position of an interventional device feature (11a) of an interventional device (11) respective an image plane (12) defined by an ultrasound imaging probe (18) of a beamforming ultrasound imaging system (15) in which the position of the interventional device feature (11a) is determined based on ultrasound signals transmitted between the ultrasound imaging probe (18) and an ultrasound transducer (16) attached to the interventional device at a predetermined distance (Lp) from the interventional device feature (11a). An icon providing unit (IPU) provides a first icon (Cde) indicative of a circular zone with a radius corresponding to the predetermined distance (Lp). The first icon (Cde) is displayed in a fused image that includes a reconstructed ultrasound image (RUI) from the beamforming ultrasound imaging system.
    Type: Application
    Filed: June 16, 2022
    Publication date: September 29, 2022
    Inventors: Hendrik Roelof STAPERT, Mustafa Hakan GÖKGÜRLER, Jeroen KORTSMIT, Stefan VAN DE PAS
  • Patent number: 11413011
    Abstract: The present invention relates to an ultrasound-based system for localizing a medical device within the field of view of an ultrasound imaging probe. A localization system is provided that includes at least three ultrasound emitters that are arranged on a frame; and a position triangulation unit. The frame is adapted for attachment to an ultrasound imaging probe. The position triangulation unit determines a spatial position of the ultrasound detector relative to the at least three ultrasound emitters based on signals received from an ultrasound detector that is attached to the medical device. The frame includes a detachable reference volume comprising a background volume and an inclusion or void.
    Type: Grant
    Filed: December 13, 2016
    Date of Patent: August 16, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Stefan Van De Pas, Hendrik Roelof Stapert
  • Patent number: 11369340
    Abstract: The present invention relates to a system for indicating a position of an interventional device feature (11a) of an interventional device (11) respective an image plane (12) defined by an ultrasound imaging probe (18) of a beamforming ultrasound imaging system (15) in which the position of the interventional device feature (11a) is determined based on ultrasound signals transmitted between the ultrasound imaging probe (18) and an ultrasound transducer (16) attached to the interventional device at a predetermined distance (Lp) from the interventional device feature (11a). An icon providing unit (IPU) provides a first icon (Cde) indicative of a circular zone with a radius corresponding to the predetermined distance (Lp). The first icon (Cde) is displayed in a fused image that includes a reconstructed ultrasound image (RUI) from the beamforming ultrasound imaging system.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: June 28, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Hendrik Roelof Stapert, Mustafa Hakan Gökgürler, Jeroen Kortsmit, Stefan Van De Pas
  • Publication number: 20220196789
    Abstract: The present invention relates to an apparatus for tracking a position of an interventional device respective an image plane of an ultrasound field. The position includes an out-of-plane distance (Dop). A geometry-providing unit (GPU) includes a plurality of transducer-to-distal-end lengths (Ltde1 . . . n), each length corresponding to a predetermined distance (Ltde) between a distal end of an interventional device and an ultrasound detector attached to the interventional device, for each of a plurality of interventional device types (T1 . . . n). An image fusion unit (IFU) receives data indicative of the type (T) of the interventional device being tracked; and based on the type (T): selects from the geometry-providing unit (GPU), a corresponding transducer-to-distal-end length (Ltde); and indicates in a reconstructed ultrasound image (RUI) both the out-of-plane distance (Dop) and the transducer-to-distal-end length (Ltde) for the interventional device within the ultrasound field.
    Type: Application
    Filed: February 17, 2022
    Publication date: June 23, 2022
    Inventors: Hendrik Roelof STAPERT, Carina SNIJDER, Ameet Kumar JAIN, Willem-Jan Arend DE WIJS
  • Patent number: 11275150
    Abstract: The present invention relates to an apparatus (10) for tracking a position of an interventional device (11) respective an image plane (12) of an ultrasound field. The position includes an out-of-plane distance (Dop). A geometry-providing unit (GPU) includes a plurality of transducer-to-distal-end lengths (Ltde1 . . . n), each length corresponding to a predetermined distance (Ltde) between a distal end (17, 47) of an interventional device (11, 41) and an ultrasound detector (16, 46) attached to the interventional device, for each of a plurality of interventional device types (T1 . . . N).
    Type: Grant
    Filed: December 2, 2016
    Date of Patent: March 15, 2022
    Assignee: KONINKLIJKE PHILIPS N.V.
    Inventors: Hendrik Roelof Stapert, Carina Snijder, Ameet Kumar Jain, Willem-Jan Arend De Wijs
  • Publication number: 20210378758
    Abstract: An acoustic imaging apparatus and method receive a sensor signal from a passive sensor disposed on a surface of an intervention device which is disposed in an area of interest, wherein the passive sensor is located at a fixed distance from the tip of the intervention device. A processor is configured to ascertain an estimated range of locations of the tip of the intervention device in an image plane by using the sensor signal and an estimated effective distance, projected onto the image plane, from the passive sensor to the tip of the intervention device.
    Type: Application
    Filed: October 22, 2019
    Publication date: December 9, 2021
    Inventors: Kunal VAIDYA, Ameet Kumar JAIN, Hendrik Roelof STAPERT, Ramon Quido ERKAMP, Shyam BHARAT, Alvin CHEN
  • Publication number: 20210361359
    Abstract: A controller for determining orientation of an interventional medical device includes a memory that stores instructions, and a processor that executes the instructions. When executed by the processor, the instructions cause the controller to execute a process that includes controlling emission, by an ultrasound probe, of multiple beams each at a different combination of time of emission and angle of emission relative to the ultrasound probe. The process also includes determining, based on receipt of a response to a subset of the multiple beams at a sensor at a location on the interventional medical device, the combination of time of emission and angle of emission relative to the ultrasound probe of one of the subset of the multiple beams. The process also includes determining orientation of the interventional medical device based on the time of emission and angle of emission relative to the ultrasound probe of the one the subset of the multiple beams.
    Type: Application
    Filed: June 11, 2019
    Publication date: November 25, 2021
    Inventors: RAMON QUIDO ERKAMP, HENDRIK ROELOF STAPERT, GUNTHER LAMPARTER, AMEET KUMAR JAIN, ALVIN CHEN, SHYAM BHARAT, KUNAL VAIDYA, FRANCOIS GUY GERARD MARIE VIGNON
  • Publication number: 20210321977
    Abstract: System (10) for determining a position of an interventional device (11) respective an image plane (12) defined by an ultrasound imaging probe (13). The position is determined based on ultrasound signals transmitted between the ultrasound imaging probe (13) and an ultrasound transducer (15) attached to the interventional device (11). An image reconstruction unit (IRU) provides a reconstructed ultrasound image (RUI). A position determination unit (PDU) computes a position (LAPTOFSmax, ?IPA) of the ultrasound transducer (15) respective the image plane (12). The position determination unit (PDU) indicates the computed position (LAPTOFSmax, ?IPA) in the reconstructed ultrasound image (RUI). The position determination unit (PDU) suppresses the indication of the computed position (LAPTOFSmax, ?IPA) under specified conditions relating to the computed position (LAPTOFSmax, ?IPA) and the ultrasound signals.
    Type: Application
    Filed: August 7, 2019
    Publication date: October 21, 2021
    Inventors: Mischa MEGENS, Hendrik Roelof STAPERT, Mustafa Hakan GOKGURLER, Stefan VAN DE PAS, Jeroen KORTSMIT, Franciscus Hendrikus VAN HEESCH, Harm Jan Willem BELT, Ameet Kumar JAIN, Kunal VAIDYA, Francois Guy Gerard Marie VIGNON
  • Publication number: 20210307717
    Abstract: System (10) for determining a position of an interventional device (11) respective an image plane (12) defined by an ultrasound imaging probe (13). The position is determined based on ultrasound signals transmitted between the ultrasound imaging probe (13) and an ultrasound transducer (15) attached to the interventional device (11). An image reconstruction unit (IRU) provides a reconstructed ultrasound image (RUI). A position determination unit (PDU) computes a lateral position (LAPTOFSmax, ?IPA) of the ultrasound transducer (15) respective the image plane (12) based on a time of flight (TOFSmax) of a maximum detected intensity (ISmax) ultrasound signal. The position determination unit (PDU) also computes an out-of-plane distance (Dop) between the ultrasound transducer (15) and the image plane (12).
    Type: Application
    Filed: August 2, 2019
    Publication date: October 7, 2021
    Inventors: Mischa MEGENS, Hendrik Roelof STAPERT, Mustafa Hakan GOKGURLER, Stefan VAN DE PAS, Jeroen KORTSMIT, Franciscus Hendrikus VAN HEESCH, Harm Jan Willem BELT, Ameet Kumar JAIN, Kunal VAIDYA
  • Publication number: 20210307716
    Abstract: An interventional device (100, 200, 300) includes an elongate shaft (101) having a longitudinal axis A-A?, an ultrasound transducer (102), an adhesive layer (103), and a protective tube (104) formed from a protective tube (104) formed from a heat-shrink material. The ultrasound transducer (102) is disposed on the elongate shaft (101) such that the ultrasound transducer (102) has an axial extent L along the longitudinal axis A-A?, At least along the axial extent L of the adhesive layer (103) is disposed between the ultrasound transducer (102) and the protective tube (104) surrounds the ultrasound transducer (102) and the adhesive layer (103) is disposed between the ultrasound transducer (102) and the protective tube (104).
    Type: Application
    Filed: August 7, 2019
    Publication date: October 7, 2021
    Inventors: Hendrik Roelof STAPERT, Gerardus Franciscus Cornelis Maria LIJTEN, Willem-Jan Arend DE WIJS, Yuichi SHIBAYAMA, Mathias THORENZ