Patents by Inventor Henrik Asplund

Henrik Asplund has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170331670
    Abstract: Methods and apparatus in a fifth-generation wireless communications network, including an example method, in a wireless device, that includes determining a reporting quality threshold for a parameter related to channel state information (CSI); performing a measurement for each of a plurality of beams from a first predetermined set of beams for evaluation; evaluating the measurement for each of the plurality of beams against the reporting quality threshold; discontinuing the performing and evaluating of measurements in response to determining that the reporting quality threshold is met for one of the beams, such that one or more beams in the first predetermined set of beams are not measured and evaluated; and reporting, to the wireless communications network, CSI for the one of the beams.
    Type: Application
    Filed: May 13, 2016
    Publication date: November 16, 2017
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali El Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Martin Johansson, Niklas Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landström, Christina Larsson, Gen Li, Bo Lincoln, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Johan Nilsson, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter Von Wrycza, Thomas Walldeen, Anders Wallén, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Publication number: 20170331577
    Abstract: Methods and apparatus in a fifth-generation wireless communications, including an example method, in a wireless device, that includes receiving a downlink signal comprising an uplink access configuration index, using the uplink access configuration index to identify an uplink access configuration from among a predetermined plurality of uplink access configurations, and transmitting to the wireless communications network according to the identified uplink access configuration. The example method further includes, in the same wireless device, receiving, in a first subframe, a first Orthogonal Frequency-Division Multiplexing (OFDM) transmission formatted according to a first numerology and receiving, in a second subframe, a second OFDM transmission formatted according to a second numerology, the second numerology differing from the first numerology. Variants of this method, corresponding apparatuses, and corresponding network-side methods and apparatuses are also disclosed.
    Type: Application
    Filed: May 13, 2016
    Publication date: November 16, 2017
    Inventors: Stefan Parkvall, Janne Peisa, Gunnar Mildh, Robert Baldemair, Stefan Wager, Jonas Kronander, Karl Werner, Richard Abrahamsson, Ismet Aktas, Peter Alriksson, Junaid Ansari, Shehzad Ali Ashraf, Henrik Asplund, Fredrik Athley, Håkan Axelsson, Joakim Axmon, Johan Axnäs, Kumar Balachandran, Gunnar Bark, Jan-Erik Berg, Andreas Bergström, Håkan Björkegren, Nadia Brahmi, Cagatay Capar, Anders Carlsson, Andreas Cedergren, Mikael Coldrey, Icaro L. J. da Silva, Erik Dahlman, Ali El Essaili, Ulrika Engström, Mårten Ericson, Erik Eriksson, Mikael Fallgren, Rui Fan, Gabor Fodor, Pål Frenger, Jonas Fridén, Jonas Fröberg Olsson, Anders Furuskär, Johan Furuskog, Virgile Garcia, Ather Gattami, Fredrik Gunnarsson, Ulf Gustavsson, Bo Hagerman, Fredrik Harrysson, Ning He, Martin Hessler, Kimmo Hiltunen, Songnam Hong, Dennis Hui, Jörg Huschke, Tim Irnich, Sven Jacobsson, Niklas Jaldén, Simon Järmyr, Zhiyuan Jiang, Martin Johansson, Niklas Johansson, Du Ho Kang, Eleftherios Karipidis, Patrik Karlsson, Ali S. Khayrallah, Caner Kilinc, Göran N. Klang, Sara Landström, Christina Larsson, Gen Li, Lars Lindbom, Robert Lindgren, Bengt Lindoff, Fredrik Lindqvist, Jinhua Liu, Thorsten Lohmar, Qianxi Lu, Lars Manholm, Ivana Maric, Jonas Medbo, Qingyu Miao, Reza Moosavi, Walter Müller, Elena Myhre, Karl Norrman, Bengt-Erik Olsson, Torgny Palenius, Sven Petersson, Jose Luis Pradas, Mikael Prytz, Olav Queseth, Pradeepa Ramachandra, Edgar Ramos, Andres Reial, Thomas Rimhagen, Emil Ringh, Patrik Rugeland, Johan Rune, Joachim Sachs, Henrik Sahlin, Vidit Saxena, Nima Seifi, Yngve Selén, Eliane Semaan, Sachin Sharma, Cong Shi, Johan Sköld, Magnus Stattin, Anders Stjernman, Dennis Sundman, Lars Sundström, Miurel Isabel Tercero Vargas, Claes Tidestav, Sibel Tombaz, Johan Torsner, Hugo Tullberg, Jari Vikberg, Peter Von Wrycza, Thomas Walldeen, Pontus Wallentin, Hai Wang, Ke Wang Helmersson, Jianfeng Wang, Yi-Pin Eric Wang, Niclas Wiberg, Emma Wittenmark, Osman Nuri Can Yilmaz, Ali Zaidi, Zhan Zhang, Zhang Zhang, Yanli Zheng
  • Publication number: 20170311180
    Abstract: There is provided a method for shaping cells in a wireless communications network. The method is performed by a network node. The method comprises acquiring previously stored spatial channel characteristics for wireless devices (WDs), the WDs being associated with a set of radio access network nodes (RANNs), the of the WDs being measured between the at least one WD and at least two RANNs in the set of RANNs. The method comprises determining beam forming parameters for shaping cells for at least one RANN in the set of RANNs based on the acquired spatial channel characteristics such that at least a predetermined share of the WDs has a network coverage probability being higher than a predetermined threshold value. The method comprises notifying at least one of the RANNs in the set of RANNs of the determined beam forming parameters.
    Type: Application
    Filed: October 6, 2014
    Publication date: October 26, 2017
    Applicant: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Niklas JALDÉN, Henrik ASPLUND, David ASTELY
  • Patent number: 9693350
    Abstract: A method and a network node (110, 111) for determining first channel state information in an upcoming time slot for use by a first radio network node (111) when determining a set of radio transmission parameters for a transmission between the first radio network node (111) and a second radio network node (121) are provided. The network node (110, 111) receives (201) second channel state information for said upcoming time slot. Furthermore, the network node (110, 111) determines (207) third channel state information for said upcoming time slot. The second and third channel state information are at least partly non-overlapping with each other. Next, the network node (110, 111) determines (208) the first channel state information, for said upcoming time slot, based on the second channel state information and the third channel state information.
    Type: Grant
    Filed: December 22, 2015
    Date of Patent: June 27, 2017
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Henrik Asplund, David Astely, Jonas Froberg Olsson, Kjell Larsson
  • Patent number: 9620860
    Abstract: An antenna arrangement 30 comprising a leaky cable 31 is disclosed. The leaky cable 31 includes subsections 32, 33, 34 and each subsection exhibits a longitudinal direction of extension L32, L33, L34 and a radiation pattern. The longitudinal directions of adjacent subsections are oriented in different directions to create a predetermined radiation pattern by superpositioning of the radiation pattern of each subsection. Additionally, a method of creating a predetermined radiation pattern of such an antenna arrangement 30 is described.
    Type: Grant
    Filed: February 28, 2011
    Date of Patent: April 11, 2017
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Henrik Asplund, Jonas Medbo
  • Patent number: 9596019
    Abstract: The present invention relates to a group (G1, G2) of at least two transceiver units (1, 2; 3, 4) in at least one wireless communication system. The transceiver units (1, 2; 3, 4) in the group (G1, G2) are arranged for wireless communication with at least one other transceiver unit. The transceiver units (1, 2; 3, 4) in the group (G1, G2) are arranged to transmit signals with polarizations that are essentially parallel to each other when received by at least one transceiver unit for which the transmitted signals (5, 6) constitutes interference. The present invention also relates to a method, a node and a transceiver unit.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: March 14, 2017
    Assignee: Telefonaktiebolaget LM Ericsson (Publ)
    Inventors: Henrik Asplund, David Astely, Johan Nystrom, Tobias Tynderfeldt
  • Patent number: 9578519
    Abstract: There is provided mechanisms for determining antenna settings associated with at least one network node in a wireless communications network. A method is performed by a network node. The method comprises detecting an event of a network node in the wireless communications network, the event indicating a need for adjustment of at least one antenna setting of the network node and/or at least one other network node in the wireless communications network. The method comprises determining the adjustment of the at least one antenna setting by identifying stored key performance information based on the event. The method comprises determining the adjustment of the at least one antenna setting by assessing a candidate set of possible antenna settings of the network node and/or the at least one other network node, wherein the candidate set is defined by the key performance information.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: February 21, 2017
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Niklas Jaldén, Henrik Asplund, Harald Kallin
  • Patent number: 9577738
    Abstract: It is presented a relay device arranged to act as a relay to provide relayed access for at least one wireless device within a vehicle to a cellular radio communication network. The relay device comprises: a relay node device comprising a vehicle antenna for communicating with the at least one wireless device; a first directional antenna directed in a first direction, the first directional antenna being connected to the relay node device; and a second antenna which is not directed in the first direction, the second antenna being connected to the relay node device. The first directional antenna and second antenna are arranged to communicate with fixed radio base stations of the cellular radio communication network; and the first direction is essentially parallel to a direction of travel of the vehicle. A corresponding vehicle and method are also presented.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: February 21, 2017
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Andreas Nilsson, Henrik Asplund, Mikael Coldrey
  • Patent number: 9560533
    Abstract: A MIMO communications system for communicating with a UE located inside a physical structure. The communication system includes a node comprising two node antennas. The node is configured for LOS wireless communication with at least first and second repeaters. The first and second repeaters each have a) an antenna provided outside the physical structure for outdoor MIMO communication with the node and b) a leaky cable provided inside the physical structure for indoor MIMO communication with the UE.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: January 31, 2017
    Assignee: TELEFONAKTIEBOLAGET LM ERICCSON (publ)
    Inventors: Andreas Nilsson, Henrik Asplund, Mikael Coldrey
  • Patent number: 9559763
    Abstract: Controlling the polarization state of signals to be transmitted from a MIMO capable radio base station node to a plurality of user equipment, which radio base station node comprises a precoder unit connecting a first and a second virtual antenna port to a respective first and second transmit antenna port, by the steps of controlling a relative phase between transmitted signals from the first and second transmit antenna port to provide a predetermined pair of orthogonal polarization states for signals transmitted on the first and second virtual antenna ports, and interchanging the polarization states of the first and second virtual antenna ports, to provide transmitted polarized signals with alternating polarization states.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: January 31, 2017
    Assignee: Telefonaktiebolaget L M Ericsson (publ)
    Inventors: Henrik Asplund, Andres Reial, Bo Hagerman, Fredrik Ovesjö
  • Publication number: 20170026852
    Abstract: There is provided mechanisms for determining antenna settings associated with at least one network node in a wireless communications network. A method is performed by a network node. The method comprises detecting an event of a network node in the wireless communications network, the event indicating a need for adjustment of at least one antenna setting of the network node and/or at least one other network node in the wireless communications network. The method comprises determining the adjustment of the at least one antenna setting by identifying stored key performance information based on the event. The method comprises determining the adjustment of the at least one antenna setting by assessing a candidate set of possible antenna settings of the network node and/or the at least one other network node, wherein the candidate set is defined by the key performance information.
    Type: Application
    Filed: July 22, 2015
    Publication date: January 26, 2017
    Applicant: Telefonaktiebolaget L M Ericsson (PUBL)
    Inventors: Niklas JALDÉN, Henrik ASPLUND, Harald KALLIN
  • Patent number: 9515386
    Abstract: An antenna arrangement comprising at least a first and a second elongated structure, e.g., a coaxial cable, for guiding an electromagnetic wave is provided. Each of said structures comprises a plurality of radiation elements. The structures are positioned alongside each other in their longitudinal direction of extension forming a bundle. The elongated structures are arranged within the bundle such that the radial positions of said structures are alternated in the longitudinal direction of extension.
    Type: Grant
    Filed: January 21, 2016
    Date of Patent: December 6, 2016
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Henrik Asplund, Anders Derneryd, Jonas Medbo
  • Publication number: 20160329622
    Abstract: The disclosure relates to an antenna system 1 for providing coverage for multiple-input multiple-output, MIMO, communication in mixed type of spaces. The antenna system 1 comprises a leaky cable 2 arranged to provide coverage in a first type of space, and a distributed antenna system 3 comprising one or more antennas 31, 32, 33, 34 and ranged to provide coverage in a second type of space, wherein each of the one or more antennas 31, 32, 33, 34 of the distributed antenna system 3 is connected to the leaky cable 2 through a circulator 41, 42, 43, and wherein the MIMO communication is enabled by both ends of the leaky cable 2 being adapted for connection to a respective antenna port 8, 9 of a network node 5 configured for IO MIMO communication. The disclosure also relates to a related method and system.
    Type: Application
    Filed: January 20, 2014
    Publication date: November 10, 2016
    Applicant: Telefonaktiebolaget L M Ericsson (publ)
    Inventors: Martin JOHANSSON, Henrik ASPLUND, Mikael COLDREY, Andreas NILSSON
  • Patent number: 9431716
    Abstract: A leaky co-axial cable arrangement, including a co-axial cable, a plurality of radiation slots arranged on the co-axial cable and an activation arrangement configured for affecting predetermined regions on the cable to selectively activate or deactivate at least one of the plurality of radiation slots to provide the leaky co-axial cable arrangement.
    Type: Grant
    Filed: April 2, 2012
    Date of Patent: August 30, 2016
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (publ)
    Inventors: Henrik Asplund, Jan-Erik Berg, Jonas Medbo
  • Publication number: 20160241313
    Abstract: The invention relates to a wireless communications system for communicating with user equipment located inside a physical structure. The system comprise a node having at least two antenna ports and being adapted for wireless communication with the user equipment, and at least one leaky cable having two ends wherein each end of the at least one leaky cable is connected to one of the antenna ports of the node. The at least one leaky cable is provided at least partially inside the physical structure and being adapted for wireless communication over a radio channel with the user equipment.
    Type: Application
    Filed: April 28, 2016
    Publication date: August 18, 2016
    Applicant: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Mikael COLDREY, Henrik Asplund, Martin Johansson, Andreas Nilsson
  • Publication number: 20160192206
    Abstract: A MIMO communications system for communicating with a UE located inside a physical structure. The communication system includes a node comprising two node antennas. The node is configured for LOS wireless communication with at least first and second repeaters. The first and second repeaters each have a) an antenna provided outside the physical structure for outdoor MIMO communication with the node and b) a leaky cable provided inside the physical structure for indoor MIMO communication with the UE.
    Type: Application
    Filed: March 9, 2016
    Publication date: June 30, 2016
    Applicant: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: Andreas NILSSON, Henrik ASPLUND, Mikael COLDREY
  • Publication number: 20160141763
    Abstract: An antenna arrangement comprising at least a first and a second elongated structure, e.g., a coaxial cable, for guiding an electromagnetic wave is provided. Each of said structures comprises a plurality of radiation elements. The structures are positioned alongside each other in their longitudinal direction of extension forming a bundle. The elongated structures are arranged within the bundle such that the radial positions of said structures are alternated in the longitudinal direction of extension.
    Type: Application
    Filed: January 21, 2016
    Publication date: May 19, 2016
    Applicant: Telefonaktiebolaget L M Ericsson (PUBL)
    Inventors: Henrik ASPLUND, Anders DERNERYD, Jonas MEDBO
  • Publication number: 20160134347
    Abstract: Controlling the polarization state of signals to be transmitted from a MIMO capable radio base station node to a plurality of user equipment, which radio base station node comprises a precoder unit connecting a first and a second virtual antenna port to a respective first and second transmit antenna port, by the steps of controlling a relative phase between transmitted signals from the first and second transmit antenna port to provide a predetermined pair of orthogonal polarization states for signals transmitted on the first and second virtual antenna ports, and interchanging the polarization states of the first and second virtual antenna ports, to provide transmitted polarized signals with alternating polarization states.
    Type: Application
    Filed: January 13, 2016
    Publication date: May 12, 2016
    Inventors: Henrik ASPLUND, Andres REIAL, Bo HAGERMAN, Fredrik OVESJÖ
  • Patent number: 9331374
    Abstract: The invention relates to a wireless communications system for communicating with user equipment located inside a physical structure. The system comprise a node having at least two antenna ports and being adapted for wireless communication with the user equipment, and at least one leaky cable having two ends wherein each end of the at least one leaky cable is connected to one of the antenna ports of the node. The at least one leaky cable is provided at least partially inside the physical structure and being adapted for wireless communication over a radio channel with the user equipment.
    Type: Grant
    Filed: December 28, 2011
    Date of Patent: May 3, 2016
    Assignee: TELEFONAKTIEBOLAGET LM ERICSSON (PUBL)
    Inventors: Mikael Coldrey, Henrik Asplund, Martin Johansson, Andreas Nilsson
  • Publication number: 20160113010
    Abstract: A method and a network node (110, 111) for determining first channel state information in an upcoming time slot for use by a first radio network node (111) when determining a set of radio transmission parameters for a transmission between the first radio network node (111) and a second radio network node (121) are provided. The network node (110, 111) receives (201) second channel state information for said upcoming time slot. Furthermore, the network node (110, 111) determines (207) third channel state information for said upcoming time slot. The second and third channel state information are at least partly non-overlapping with each other. Next, the network node (110, 111) determines (208) the first channel state information, for said upcoming time slot, based on the second channel state information and the third channel state information.
    Type: Application
    Filed: December 22, 2015
    Publication date: April 21, 2016
    Applicant: Telefonaktiebolaget L M Ericsson (PUBL)
    Inventors: Henrik ASPLUND, David ASTELY, Jonas FROBERG OLSSON, Kjell LARSSON