Patents by Inventor Henrik Stiesdal

Henrik Stiesdal has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9030036
    Abstract: The invention concerns an arrangement for a direct drive generator for a wind turbine, which generator comprises a stator with several stator segments each stator segment having at least one stator element for the power generation and which generator comprises a rotor pivotable around a center axis of the generator and relatively to the stator with several rotor segments each rotor segment having at least one rotor element for the power generation, wherein said arrangement comprises at least one stator segment and at least one rotor segment, and wherein the at least one stator segment and the at least one rotor segment are able to be at least temporarily supported against each other. The invention concerns further a direct drive generator comprising such an arrangement, a wind turbine comprising such a direct drive generator as well as a method for the assembly of the direct drive generator.
    Type: Grant
    Filed: November 21, 2008
    Date of Patent: May 12, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventor: Henrik Stiesdal
  • Patent number: 9018821
    Abstract: A stator arrangement for an electromechanical transducer is provided. The stator arrangement includes a base structure, a coil holder, a coil mounted at the coil holder; and a flexible element connecting the base structure to the coil holder flexibly relative to each other. Further, an electromechanical transducer is provided that includes the above-mentioned stator arrangement and a rotor arrangement rotatable relative to the base structure around an axial direction. Still, further, a wind turbine is provided that includes the above-mentioned electromechanical transducer as a generator.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: April 28, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventor: Henrik Stiesdal
  • Publication number: 20150108764
    Abstract: An electric assembly for electrically connecting at least one wind turbine being located off-shore with an electric subsea cable being connected to an on-shore power grid is provided. The electric assembly has (a) a transformer for transforming a first voltage level being provided by the at least one wind turbine to a second voltage level of the subsea cable, and (b) an external equipment being electrically and mechanically connected to the transformer for controlling an operation of at least the transformer. The transformer and the electric equipment are formed by a preinstalled package, which can be mechanically handled as a single piece. Further, a wind turbine having such an electric assembly, a wind turbine cluster having such a wind turbine, and a method for mounting such an electric assembly to a tower of a wind turbine are provided.
    Type: Application
    Filed: October 2, 2014
    Publication date: April 23, 2015
    Applicant: Siemens Aktiengesellschaft
    Inventors: Jesper Moeller, Henrik Stiesdal, Jan Thisted
  • Patent number: 9000970
    Abstract: A reflector is arranged at a first position, which is assigned to a first end of the object. An antenna-system is arranged at a second position, which is assigned to a second end of the object. The antenna system contains a transmit antenna and a receive antenna, while the reflector and the antenna-system are coupled by a radio signal. The radio signal is sent from the transmit antenna via the reflector towards the receive antenna. The receive antenna is connected with an evaluation unit, which is prepared to measure the deflection between the first end of the object and the second end of the object based on the received radio signal.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: April 7, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventors: Jimmi Andersen, Per Egedal, Henrik Stiesdal, Andreas Ziroff
  • Patent number: 8992170
    Abstract: A wind turbine having an air-conditioning system is provided. The air-conditioning system controls the climatization of the interior of the nacelle of the wind turbine. The air conditioning system includes at least one air inlet for ventilating the interior with air intake from outside of the wind turbine. The air-conditioning system also includes a heater for heating the air intake.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: March 31, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventor: Henrik Stiesdal
  • Patent number: 8991183
    Abstract: A thermal energy storage and recovery device is disclosed which includes a heat exchanger arrangement configured for guiding a flow of a heat transfer medium between a first end and a second end, and a heat storage material surrounding the heat exchanger arrangement so that a thermal interaction region is formed for thermally coupling the heat transfer medium with the heat storage material. The heat exchanger arrangement is sealed against the heat storage material so that, when in a first operational mode, in which the heat storage material is supposed to receive thermal energy from the heat transfer medium, a compressed gas is usable as the heat transfer medium for transferring thermal energy from the heat transfer medium to the heat storage material.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: March 31, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventor: Henrik Stiesdal
  • Publication number: 20150075210
    Abstract: A method for charging and discharging a heat accumulator is provided. A system by which the method can be performed is also provided. By means of the heat accumulator, it is possible to convert overcapacities of wind turbines, for example, into a charging circuit as heat in the accumulator by a compressor. If necessary, electricity can be stored into the network by a turbine and a generator, wherein the heat accumulator is discharged. The charging circuit and the discharging circuit are operated by a Rankine cycle, wherein for example river water is available as a reservoir for heat exchangers in order to cause evaporation of the working medium in the charging circuit and condensation of the working medium in the discharging circuit.
    Type: Application
    Filed: March 28, 2013
    Publication date: March 19, 2015
    Applicant: Siemens Aktiengesellschaft
    Inventors: Daniel Reznik, Henrik Stiesdal
  • Patent number: 8975795
    Abstract: Electric generator is disclosed having a stator and a rotor. The rotor being rotatable around a center axis and relatively to the stator and the stator includes a number of stator windings extending in freely exposed end windings. The stator and/or the rotor is provided with at least one barrier means which barrier means axially extends to such a manner that at least the end windings of the stator are at least partially covered.
    Type: Grant
    Filed: August 3, 2010
    Date of Patent: March 10, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventor: Henrik Stiesdal
  • Publication number: 20150059342
    Abstract: A system for storing and outputting thermal energy and a method for operating the system are provided. The system operates according to the Brayton cycle, wherein a heat accumulator is charged by a compressor and a cold accumulator is charged by turbines. The cycle is reversed for discharging. In addition, the cold accumulator supplies a cooling circuit, which provides the cooling for a superconducting generator by a cooling unit. A favorable generator weight can thereby be advantageously achieved in particular for wind turbines, because the generators are limited regarding the weight thereof due to being housed in the nacelle of the wind power plant. Thus, advantageously higher power can be converted in the wind power plant.
    Type: Application
    Filed: March 28, 2013
    Publication date: March 5, 2015
    Applicant: Siemens Aktiengesellschaft
    Inventors: Ursus Krüger, Daniel Reznik, Henrik Stiesdal
  • Patent number: 8966902
    Abstract: A thermal energy storage device is provided. The device has a heat exchanger arrangement for guiding a flow of a heat transfer medium between a first end and a second end of the heat exchanger arrangement, and a heat storage material surrounding the heat exchanger arrangement. The heat exchanger arrangement transports the heat transfer medium from the first end to the second end if the thermal energy storage device is in a first operational mode, in which the heat storage material is supposed to receive thermal energy from the heat transfer medium, and transports the heat transfer medium from the second end to the first end if the thermal energy storage device is in a second operational mode, in which the heat storage material is supposed to release thermal energy to the heat transfer medium.
    Type: Grant
    Filed: October 29, 2010
    Date of Patent: March 3, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventor: Henrik Stiesdal
  • Patent number: 8963361
    Abstract: A direct driven wind turbine includes an electrical generator with a rotor and a stator, a hub constructed to receive a rotor blade, and an actuator device. The hub is connected to the rotor of the electrical generator. The hub and the rotor of the electrical generator are rotatable mounted in respect to the stator of the generator. The actuator device is constructed and arranged to rotate the rotor of the electrical generator and the hub of the wind turbine in respect to the stator of the electrical generator, wherein the actuator device is at least one motor.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: February 24, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventors: Peter Loevenskjold Falkenberg, Karl Aage Maj, Jacob Blach Nielsen, Henning Poulsen, Brian Rasmussen, Henrik Stiesdal
  • Patent number: 8950058
    Abstract: It is described a method for producing and stacking lamina elements in an aligned manner, in particular lamina elements for a stator of an electrical generator. The method cutting out a first lamina element from a foil, transferring the first lamina element to a container by utilizing the gravitational force, cutting out a second lamina element from the foil or from a further foil, and transferring the second lamina element to the container on top of the first lamina element by utilizing the gravitational force. It is further described a cutting machine for producing lamina elements, a container for stacking lamina elements in an aligned manner and a system for producing and stacking lamina elements in an aligned manner.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: February 10, 2015
    Assignee: Siemens Aktiengesellschaft
    Inventor: Henrik Stiesdal
  • Publication number: 20140352295
    Abstract: An installation for storing thermal energy is provided, comprising a heat accumulator and a cold accumulator. A method for charging and discharging said thermal accumulators is also provided. Using the installation, excess electrical energy can be utilized for converting mechanical energy from a compressor and a turbine into thermal energy, which is available in the heat accumulator and the cold accumulator for a subsequent generation of electrical energy. A temporary heat store is discharged during the charging of the heat accumulator and the cold accumulator, preheating the working gas for the compressor. When the heat accumulator and the cold accumulator are discharged via the turbine and the compressor for the purpose of generating electrical energy, the temporary store can be recharged so that the heat stored therein can be made available for a subsequent charging process of the heat accumulator and the cold accumulator.
    Type: Application
    Filed: September 26, 2012
    Publication date: December 4, 2014
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Daniel Reznik, Henrik Stiesdal
  • Patent number: 8899882
    Abstract: A jacket assembly guide for assembling a jacket structure is provided. The jacket structure includes a plurality of legs, a plurality of connecting braces and a plurality of node elements arranged on the legs for connecting the braces to the legs. The assembly guide includes a plurality of supporting towers for supporting the plurality of legs such that a supported leg is held in a position corresponding to the position of that leg in the assembled state of the jacket structure. The assembly guide further includes a plurality of connecting devices for releasably connecting one of the legs to one of the supporting towers.
    Type: Grant
    Filed: April 12, 2012
    Date of Patent: December 2, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventors: Thomas Oestergaard, Henrik Stiesdal
  • Publication number: 20140338329
    Abstract: An installation for storing thermal energy which can be obtained, for example, at times of overcapacities, from regenerative energy and then be stored is provided. The energy stored in a heat accumulator, a cold accumulator and in an additional heat accumulator can be, when needed, reconverted into electrical energy by circuits via a generator (G) while using a compressor and a turbine. The working gas is humidified by a humidification column, ideally until saturation, whereby, advantageously, a greater mass flow can be obtained at a lower volume flow. For this reason, more economical components can be used while simultaneously a high yield of the installation is achieved.
    Type: Application
    Filed: September 25, 2012
    Publication date: November 20, 2014
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Daniel Reznik, Henrik Stiesdal
  • Patent number: 8882466
    Abstract: A rotor blade assembly is provided that includes a rotor blade and a rotor blade tip member. The rotor blade is provided with an integrated lightning down conductor and is attachable or attached to a rotor hub of a wind turbine. The rotor blade tip member is made of an electrically insulating material and is detachably attached or adapted to be detachably attached to a free ending of the rotor blade by a connecting device. The connecting device is a wire or a rod made of an electrically conductive material establishing or adapted to establish a mechanical and electrical connection of the rotor blade tip member with the lightning down conductor of the rotor blade.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: November 11, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventor: Henrik Stiesdal
  • Publication number: 20140314580
    Abstract: A wind turbine including a load carrying component made of or at least comprising a fibre-reinforced composite material is provided. The wind turbine also includes a stator endplate or rotor endplate of a direct drive generator where in the stator endplate or rotor endplate is made of or includes a fibre reinforced composite material.
    Type: Application
    Filed: November 16, 2012
    Publication date: October 23, 2014
    Inventors: Soeren Oemann Lind, Henrik Stiesdal
  • Publication number: 20140308125
    Abstract: A wind turbine for power generation is provided. The wind turbine includes a power generating unit and a rotor having a plurality of blades. To control power output of the wind turbine, the blades are capable of being pitched by a blade pitch adjusting device. The wind turbine also includes a pitch control unit for controlling the blade pitch adjusting device. Furthermore, the wind turbine includes a load determining device for determining the blade load from the pitch activity of the blades.
    Type: Application
    Filed: June 27, 2014
    Publication date: October 16, 2014
    Inventor: Henrik Stiesdal
  • Patent number: 8847456
    Abstract: An arrangement to ensure an air gap in an electrical machine is provided. The electrical machine has a stator arrangement and a rotor arrangement, the rotor arrangement rotating around a longitudinal axis. An air gap is defined by a distance between parts of the rotor arrangement and parts of the stator arrangement, wherein the parts of the stator arrangement are opposite to the parts of the rotor arrangement along a certain length. The stator arrangement includes a lamination stack which is constructed to support a winding of a stator-coil, and the rotor arrangement includes a plurality of permanent magnets. A cross section of the air gap changes along the certain length such that the air gap is not uniform in view to the certain length. The cross section of the air gap is configured by a change in a shape of the lamination stack along the certain length.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: September 30, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventor: Henrik Stiesdal
  • Publication number: 20140284021
    Abstract: A thermal energy storage and recovery device is provided including a container having a first fluid terminal for inserting heat transfer medium into the interior of the container and a second fluid terminal for extracting heat transfer medium from the interior of the container, a heat storage material for receiving thermal energy from the heat transfer medium when in a first operational mode and releasing thermal energy to the heat transfer medium when in a second operational mode, and a plurality of enclosures each filled at least partially with a part of the heat storage material. The enclosures are spatially arranged within the container so a flow of the heat transfer medium is guidable between the first and second fluid terminals and a direct thermal contact between the heat transfer medium and the enclosures is achievable as the heat transfer medium flows between the first and second fluid terminals.
    Type: Application
    Filed: September 4, 2012
    Publication date: September 25, 2014
    Applicant: SIEMENS AKTIENGESELLSCHAFT
    Inventors: Hans Laurberg, Henrik Stiesdal